数学人教B版必修5学案: 3.2 均值不等式 WORD版含解析.DOC
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学人教B版必修5学案: 3.2均值不等式 WORD版含解析 学人 必修 3.2 均值 不等式 WORD 解析
- 资源描述:
-
1、数学人教B必修5第三章3.2均值不等式1探索并了解均值不等式的证明过程,理解均值不等式成立的条件,等号成立的条件及几何意义2会用均值不等式解决简单的问题3掌握运用均值不等式求最值的常用方法及需注意的问题1重要不等式:对于任意实数a,b,有a2b2_2ab,当且仅当_时,等号成立(1)重要不等式成立的条件是a,bR.它既可以是具体的数字,也可以是比较复杂的代数式,因此应用范围较广;(2)等号成立的条件是当且仅当ab,即当ab时,等号成立;反之,等号成立时有ab.【做一做1】不等式a12(a0)中等号成立的条件是()Aa2Ba1Ca Da02(1)均值不等式:如果a,bR,那么_,当且仅当_时,等
2、号成立也叫基本不等式(2)对任意两个正实数a,b,数叫做a,b的_,数叫做a,b的_,故基本不等式用语言叙述是_公式变形:(1)ab2,ab()2(a,bR),当且仅当ab时,等号成立(2)a2(aR),当且仅当a1时,等号成立(3)2(a,b同号),当且仅当ab时,等号成立【做一做21】若x0,则x的最小值为_【做一做22】已知0x,则函数yx(13x)的最大值是_3已知x,y都为正数,则(1)若xyS(和为定值),则当_时,积xy取得最大值_(2)若xyP(积为定值),则当_时,和xy取得最小值_(1)应用上述性质时注意三点:各项或各因式均为正;和或积为定值;各项或各因式能取得相等的值即“
3、一正二定三相等”(2)应用上述时,有时需先配凑成和或积为定值的情况,再应用【做一做3】已知x,y都是正数,(1)如果xy15,则xy的最小值是_;(2)如果xy15,则xy的最大值是_一、使用均值不等式求最值的注意事项剖析:(1)a,b都是正实数,即所求最值的代数式中的各项必须都是正数,否则就会得出错误答案例如,当x0时,函数f(x)x22,所以函数f(x)的最小值是2.由于f(2)22,很明显这是一个错误的答案其原因是当x0时,不能直接用均值不等式求f(x)x的最值因此,利用均值不等式求最值时,首先确定所求最值的代数式中的各项是否都是正数其实,当x0时,x0,则f(x)x22,此时有f(x)
4、2.因此,当所求最值的代数式中的各项不都是正数时,应利用变形,转化为各项都是正数的代数式(2)ab与ab有一个是定值,即当ab是定值时,可以求ab的最值;当ab是定值时,可以求ab的最值如果ab和ab都不是定值,那么就会得出错误答案例如,当x1时,函数f(x)x2,所以函数f(x)的最小值是2.由于2是一个与x有关的代数式,很明显这是一个错误的答案其原因是没有掌握均值不等式求最值的条件:ab与ab有一个是定值其实,当x1时,有x10,则函数f(x)x(x1)1213.因此,当ab与ab没有一个是定值时,通常把所求最值的代数式采用配凑的方法化为和或积为定值的形式(3)等号能够成立,即存在正数a,
5、b使均值不等式两边相等,也就是存在正数a,b使得.如果忽视这一点,就会得出错误答案例如,当x2时,函数f(x)x22,所以函数f(x)的最小值是2.很明显x中的各项都是正数,积也是定值,但是等号成立的条件是当且仅当x,即x1,而函数的定义域是x2,所以这是一个错误的答案其原因是均值不等式中的等号不成立其实,根据解题经验,遇到这种情况时,一般就不再用均值不等式求最值了,此时该函数的单调性是确定的,可以利用函数的单调性求得最值利用函数单调性的定义可以证明,当x2时,函数f(x)x是增函数,函数f(x)的最小值是f(2)2.因此在使用均值不等式求最值时,上面三个条件缺一不可,通常将这三个条件总结成口
6、诀:一正、二定、三相等二、教材中的“思考与讨论”均值不等式与不等式a2b22ab的关系如何?请对此进行讨论剖析:(1)在a2b22ab中,a,bR;在ab2中,a,bR.(2)两者都带有等号,等号成立的条件从形式上看是一样的,但实质不同(范围不同)(3)证明的方法都是作差比较法(4)都可以用来求最值题型一 利用均值不等式比较大小【例1】已知a,b,c(0,),且abc1,试比较a2b2c2,abbcca,的大小分析:变形利用不等式找出a2b2c2与abbcca的大小,结合条件abc1再找两代数式与的关系,从而确定它们的大小反思:要想运用均值不等式,必须把题目中的条件或要解决的问题“化归”到不等
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
