数学素材:为什么用单位圆上点的坐标定义任意角的三角函数.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 素材 为什么 单位 圆上点 坐标 定义 任意 三角函数
- 资源描述:
-
1、为什么用单位圆上点的坐标定义任意角的三角函数 在人教版普通高中实验教科书数学4必修(A版)(简称“人教A版”)中,三角函数采用了如下定义(简称“单位圆定义法”):“如图1,设是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做的正弦,记作sin,即sin=y;(2)x叫做的余弦,记作cos,即cos=x;(3)叫做的正切,记作tan,即tan=(x0)可以看出,当=(kZ)时,的终边在y轴上,这时点P的横坐标x等于0,所以无意义除此之外,对于确定的角,上述三个值都是唯一确定的所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三
2、角函数”1部分教师的疑惑和意见由于种种原因,实验区有的教师对上述定义不理解,认为该定义不如以往教材采用的定义,即在角的终边上任取一点P(x,y),P到原点的距离为r,比值,分别定义为角的正弦函数、余弦函数和正切函数(简称“终边定义法”)其理由主要有以下几点:第一,“单位圆定义法”中,“交点是特殊的,缺乏一般性,不符合数学定义的要求”;“终边定义法”中,“所取得点是任意的,具有一般性,符合数学定义的要求”有的老师说,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”第二,“单位圆定义法”不利于将锐角三角函数推广到任意角三角函数;“终边定义法”有利于这种推广有的老师说,“用单位圆上点的坐标定
3、义正弦、余弦函数带来了不少便利,其根本原因是它化简了三角函数的比值而用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义”第三,“单位圆定义法”不利于解题有的老师说,在解“已知角终边上一点的坐标是(3a,4a),求角的三角函数值”时,用“终边定义法”非常方便,而用“单位圆定义法”很不方便为了解答老师们的疑问,我们首先从回顾三角函数的发展历史开始2对三角函数发展历史的简单回顾回顾三角学发展史,可以发现它的起源、发展与天文学密不可分,它是一种对天文观察结果进行推算的方法1450年以前,三角学主要是球面三角,这是航海、立法推算以及天文观测等人类实践活动的需要,同时
4、也是宇宙的奥秘对人类的巨大吸引力所至,这种“量天的学问”确实太诱人了后来,由于间接测量、测绘工作的需要而出现了平面三角三角学从天文学中独立出来的标志是德国数学家雷格蒙塔努斯(J. Regiomontanus,14361476)于1464年出版论各种三角形,这部著作首次对三角学做出了完整、独立的阐述其中采用印度人的正弦,即圆弧的半弦,明确使用了正弦函数,讨论了一般三角形的正弦定理,提出了求三角形边长的代数解法,给出了球面三角的正弦定理和关于边的余弦定理这部著作为三角学在平面与球面几何中的应用奠定了牢固基础后来,哥白尼的学生雷提库斯(G. J. Rhaeticus,15141576)将传统的圆中的
5、弧与弦的关系改进为角的三角函数关系,把三角函数定义为直角三角形的边长之比,从而使平面三角学从球面三角学中独立出来,并采用了六个函数(正弦、余弦、正切、余切、正割、余割)法国数学家韦达(F. Vieta,15401603)总结了前人的三角学研究成果,将解平面直角三角形和斜三角形的公式汇集在一起,还补充了自己发现的新公式,如正切公式、和差化积公式等,并将解斜三角形的问题转化为解直角三角形的问题等,这是对三角学的进一步系统化总之,16世纪,三角学从天文学中分离出来,成为数学的一个独立分支不过,值得注意的是,这时所讨论的“三角函数”仅限于锐角三角函数,而且研究锐角三角函数的目的在于解三角形和三角计算任
6、意角的三角函数的研究,与圆周运动的研究有直接关系17世纪,“数学从运动的研究中引出了一个基本概念在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数或变量间的关系的概念” “正弦、余弦函数是一对起源于圆周运动,密切配合的周期函数,它们是解析几何学和周期函数的分析学中最为基本和重要的函数;而正弦、余弦函数的基本性质乃是圆的几何性质(主要是其对称性)的直接反映” 任意角的三角函数的系统化是在18世纪的微积分研究中完成的“微积分的一般工作的结果是:初等函数被充分地认识了,并实际已将它们发展成为我们今天所见到的样子”“三角函数的数学也系统化了Newton和Leibniz给出了这些函数的
7、级数展开式两个角的和与差的三角函数sin(xy),sin(xy)的公式的发展应归功于一批人最后,Euler于1748年在关于木星和土星运动中的不等式的一篇得奖文章中给出了三角函数的一个十分系统的处理在Euler1748年的引论中已经搞清了三角函数的周期性,并引入了角的弧度制” 3任意角的三角函数与锐角三角函数的关系从上述简单回顾可以看到,任意角的三角函数虽然与三角学(锐角三角函数)有渊源关系,某种意义上可以把前者看成是后者的进一步发展,但它们研究的是两类不同的问题“三角学所讨论的课题是三角形的各种各样的几何量之间的函数关系” ,锐角三角函数是解三角形的工具;而任意角的三角函数却不限于此,它是一
8、个周期函数,是研究现实世界中周期变化现象的“最有表现力的函数”另外,从数学发展的历史看,任意角的三角函数在18世纪之所以得到系统研究(其中很重要的是函数的三角级数展开式问题),一个主要原因是三角函数具有周期性,这一特殊属性在天文学、物理学中有大量的应用三角级数“在天文学中之所以有用,显然是由于它们是周期函数,而天文现象大都是周期的” ,而这种应用又与当时的数学研究的中心工作微积分紧密结合,人们在研究行星运动的各种问题时,需要确定函数的Fourier展开式,而这种展开式(三角级数)的系数是用定积分表示的所以,锐角三角函数是研究三角形各种几何量之间的关系而发展起来的,任意角三角函数是研究现实中的周
9、期现象而发展起来的它们研究的对象不同,表现的性质也不同我们既不能把任意角的三角函数看成是锐角三角函数的推广(或一般化),又不能把锐角三角函数看成是任意角的三角函数在锐角范围内的“限定”4用“单位圆定义法”的理由用单位圆上点的坐标定义任意角的三角函数有许多优点(1)简单、清楚,突出三角函数最重要的性质周期性采用“单位圆定义法”,对于任意角a,它的终边与单位圆交点P(x,y)唯一确定,这样,正弦、余弦函数中自变量与函数值之间的对应关系,即角a(弧度)对应于点P的纵坐标y正弦,角a(弧度)对应于点P的横坐标x余弦,可以得到非常清楚、明确的表示,而且这种表示也是简单的另外,“x= cosa,y= si
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
初级药士相关专业知识-药剂学-9.pdf
