2019年《新学考》高中人教A版数学选修1-1练习:第二章 圆锥曲线与方程 2-3-2 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新学考 2019年新学考高中人教A版数学选修1-1练习:第二章 圆锥曲线与方程 2-3-2 WORD版含解析 2019 新学 中人 数学 选修 练习 第二 圆锥曲线 方程 WORD 解析
- 资源描述:
-
1、2.3.2抛物线的简单几何性质课后训练案巩固提升一、A组1.若点P在抛物线x2=-12y上,且P到抛物线的准线的距离为d,则d的取值范围是()A.6,+)B.3,+)C.(6,+)D.(3,+)解析:由已知得2p=12,所以p2=3,因此d的取值范围是3,+).答案:B2.(2016陕西咸阳高二月考)已知抛物线x2=-4y的通径为AB,O为坐标原点,则()A.通径AB长为8,AOB的面积为4B.通径AB长为8,AOB的面积为2C.通径AB长为4,AOB的面积为4D.通径AB长为4,AOB的面积为2解析:抛物线的通径为过焦点且垂直于对称轴的弦,长为2p,故|AB|=4,SAOB=1214=2.答
2、案:D3.已知双曲线x2a2-y2b2=1(a0,b0)的两条渐近线与抛物线y2=2px(p0)的准线分别交于A,B两点,O为坐标原点,若双曲线的离心率为2,AOB的面积为3,则抛物线的焦点坐标为()A.(2,0)B.(1,0)C.(8,0)D.(4,0)解析:因为ca=2,所以c2a2=a2+b2a2=4,于是b2=3a2,则ba=3,故双曲线的两条渐近线方程为y=3x,而抛物线y2=2px(p0)的准线方程为x=-p2,所以A-p2,3p2,B-p2,-3p2,则|AB|=3p,又AOB的高为p2,则SAOB=12p23p=3,即p2=4.因为p0,所以p=2,故抛物线焦点坐标为(1,0)
3、.答案:B4.直线y=kx-2交抛物线y2=8x于A,B两点,若AB中点的横坐标为2,则k=()A.2或-2B.1或-1C.2D.3解析:由y2=8x,y=kx-2,得k2x2-4(k+2)x+4=0.又由=42(k+2)2-16k20,得k-1.则由4(k+2)k2=4,得k=2或k=-1(舍去).故选C.答案:C5.(2016曲阜师大附中)已知抛物线的顶点在坐标原点,对称轴为x轴,且与圆x2+y2=4相交的公共弦长等于23,则抛物线的方程为()A.y2=3x或y2=-3xB.y2=-3xC.y2=6xD.y2=6x或y2=-6x解析:设所求抛物线的方程为y2=2mx(m0),设交点A(x1
4、,y1),B(x2,y2)(y10,y20),由于l垂直于对称轴且过焦点,故直线l的方程为x=p2,则|AB|=2p=12,故p=6.所以抛物线的准线方程为x=-3,故SABP=12612=36.答案:367.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是.解析:设直线l方程为y=k(x+2),与抛物线联立方程组整理得ky2-8y+16k=0.当k=0时,直线l与抛物线有一个交点;当k0时,由=64-64k20,解得-1k1,且k0.所以-1k1.答案:-1k18.已知点A(2,0),B(4,0),点P在抛物线y2=-4x上运动,则APBP
5、取最小值时点P的坐标为.解析:设点P(x0,y0),则y02=-4x0(x00),APBP=(x0-2,y0)(x0-4,y0)=x02-6x0+8+y02=x02-10x0+8=(x0-5)2-17.x0(-,0,当x0=0时,APBP取得最小值,此时点P的坐标为(0,0).答案:(0,0)9.已知直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C有:(1)一个公共点;(2)两个公共点;(3)没有公共点?解:由y=kx+1,y2=4x,得k2x2+(2k-4)x+1=0.(*)当k=0时,方程变为-4x+1=0,x=14,此时y=1.所以直线l与C只有一个公共点14,1,此时直
6、线l平行于x轴.当k0时,方程(*)是一个一元二次方程,且=(2k-4)2-4k21=16-16k,当0,即k1,且k0时,l与C有两个公共点,此时l与C相交;当=0,即k=1时,l与C有一个公共点,此时直线l与C相切;当1时,l与C没有公共点,此时直线l与C相离.综上所述,(1)当k=1或k=0时,直线l与C有一个公共点.(2)当k1时,直线l与C没有公共点.10.如图,河道上有一座抛物线型拱桥,在正常水位时,拱圈最高点距水面8 m,拱圈内水面宽16 m.为保证安全,要求通过的船的顶部(设为平顶)与拱圈在竖直方向上的高度之差至少为0.5 m.(1)一条船的顶部宽4 m,在正常水位时,要使这条
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-570011.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
