分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2020-2021学年高一数学 专题强化练六 空间中的垂直关系(含解析).docx

  • 上传人:a****
  • 文档编号:580959
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:7
  • 大小:143.99KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020-2021学年高一数学 专题强化练六 空间中的垂直关系含解析 2020 2021 学年 数学 专题 强化 空间 中的 垂直 关系 解析
    资源描述:

    1、专题强化练6空间中的垂直关系一、选择题 1.已知正方体ABCD-A1B1C1D1的棱AA1的中点为E,AC与BD交于点O,平面过点E且与直线OC1垂直,若AB=1,则平面截该正方体所得截面图形的面积为 ()A.64B.62 C.32D.342.如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么在这个空间图形中必有 ()A.AG平面EFHB.AH平面EFH C.HF平面AEFD.HG平面AEF3.在三棱柱ABC-A1B1C1中,已知ABAC,AA1平面A1B1C1,则下列选项中,

    2、能使异面直线BC1与A1C相互垂直的条件为 ()A.A1CA=45B.BCA=45C.四边形ABB1A1为正方形D.四边形BCC1B1为正方形4.如图,棱长为1的正方体ABCD-A1B1C1D1中,P为线段AB1的中点,M,N分别为线段AC1和棱C1D1上任意一点,则PM+22MN的最小值为 ()A.24B.22 C.1D.2二、填空题5.经过平面外一点和平面内一点与平面垂直的平面有.6.三棱锥S-ABC中,点P是RtABC斜边AB上一点,给出下列四个命题:若SA平面ABC,则三棱锥S-ABC的四个面都是直角三角形;若AC=BC=SC=2,SC平面ABC,则三棱锥S-ABC的外接球表面积为12

    3、;若AC=3,BC=4,SC=5,S在平面ABC上的射影是ABC的内心,则三棱锥S-ABC的体积为2;若AC=3,BC=4,SA=3,SA平面ABC,则直线PS与平面SBC所成的最大角为45.其中正确命题的序号是.三、解答题7.如图所示,在长方体ABCD-A1B1C1D1中,AB=2,BC=2,CC1=4,M为棱CC1上一点.(1)若C1M=1,求异面直线A1M和C1D1所成角的正切值;(2)若C1M=2,求证BM平面A1B1M.8.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.(1)求证:EF平面PAB;(2)若AP=AD,且平面PAD平面ABCD,证明

    4、:AF平面PCD.深度解析9.如图,四边形ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO底面ABCD,E是PC的中点.求证:(1)PA平面BDE;(2)平面BDE平面PAC.10.如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2,BC=a,PA底面ABCD.(1)当a为何值时,BD平面PAC?证明你的结论;(2)若在棱BC上至少存在一点M,使PMDM,求a的取值范围.答案全解全析一、选择题1.A连接OE,BE,ED,C1E.易得OC12=1+12=32,OE2=14+12=34,EC12=2+14=94,OC12+OE2=EC12,OEOC1,易得BD平面ACC1

    5、A1,BDOC1,又OEBD=O,OC1平面BDE,所得截面为BDE.SBDE=12BDOE=12232=64,截该正方体所得截面图形的面积为64.故选A.2.B易知AHHE,AHHF,又HEHF=H,AH平面EFH,B正确;过A只有一条直线与平面EFH垂直,A不正确;易知AGEF,EFAH,又AGAH=A,EF平面HAG,又EF平面AEF,平面HAG平面AEF,过H作直线l垂直于平面AEF,则l一定在平面HAG内,C不正确;HG不垂直AG,HG平面AEF不正确,D不正确.故选B.3.A如图,连接AC1.易知AA1平面ABC,AA1AB,又ABAC,AA1AC=A,AB平面ACC1A1.A1C

    6、平面ACC1A1,ABA1C,当异面直线BC1与A1C相互垂直时,由ABBC1=B,可得A1C平面ABC1,AC1平面ABC1,A1CAC1,四边形ACC1A1为正方形,A1CA=45,反之亦然,即A1CA=45时,可得BC1A1C成立.故选A.4.C如图,连接C1D,过M作MHC1D于H,连接HN,过H作HH1C1D1于H1,则MHAD,MHAD=C1HC1D.AD平面CC1D1D,MH平面CC1D1D.易知HH1DD1,HH1DD1=C1HC1D,即MHAD=HH1DD1,AD=DD1,MH=HH1,在RtMHN中,MN2=MH2+HN2,HNHH1,MH2+HN2MH2+HH12=2MH

    7、2,即MN22MH2,MN2MH,PM+22MNPM+MH1,即PM+22MN的最小值为1.故选C.二、填空题5.答案1个或无数个解析设平面外一点为A,平面内一点为O,若OA,则过OA的任一平面都垂直,所以过OA存在无数个平面与平面垂直;若OA不垂直于,则过点A有唯一的直线l与平面垂直,OA与l确定唯一的平面与垂直,所以过OA存在唯一的平面与平面垂直.故答案为1个或无数个.6.答案解析对于,SA平面ABC,AB、AC、BC平面ABC,SAAB,SAAC,SABC,又BCAC,SAAC=A,BC平面SAC,SC平面SAC,BCSC,三棱锥S-ABC的四个面都是直角三角形,正确;对于,若AC=BC

    8、=SC=2,SC平面ABC,则三棱锥S-ABC的外接球可以看作棱长为2的正方体的外接球,2R=23(R为外接球的半径),球的表面积为12,正确;对于,设ABC的内心是O,则SO平面ABC,连接OC,则有SO2=SC2-OC2=5-2=3,SO=3,三棱锥S-ABC的体积V=13SABCSO=1312343=23,不正确;对于,若SA=3,SA平面ABC,则直线PS与平面SBC所成的角最大时,P点与A点重合,易知AS与平面SBC所成的角为ASC,在RtSCA中,tanASC=33=1,ASC=45,直线PS与平面SBC所成的最大角为45,正确.故答案为.三、解答题7.解析(1)C1D1B1A1,

    9、B1A1M是异面直线A1M和C1D1所成的角.在长方体ABCD-A1B1C1D1中,A1B1平面BCC1B1,A1B1B1M,B1C1=BC=2,C1M=1,B1M=B1C12+MC12=4+1=5,tanB1A1M=B1MA1B1=52,即异面直线A1M和C1D1所成角的正切值为52.(2)证明:当C1M=2时,B1M=BM=BC2+CM2=22,B1M2+BM2=BB12,B1MBM,A1B1平面BCC1B1,BM平面BCC1B1,A1B1BM.又A1B1B1M=B1,BM平面A1B1M.8.证明(1)E、F分别是棱PC和PD的中点,EFCD,又在矩形ABCD中,ABCD,EFAB,AB平

    10、面PAB,EF平面PAB,EF平面PAB.(2)在矩形ABCD中,ADCD,又平面PAD平面ABCD,平面PAD平面ABCD=AD,CD平面ABCD,CD平面PAD,又AF平面PAD,CDAF.PA=AD,F是PD的中点,AFPD,PD平面PCD,CD平面PCD,PDCD=D,AF平面PCD.方法总结证明线面平行的关键是在面中找到一条与已知直线平行的直线,找线的方法可利用三角形的中位线或平行公理;线面垂直的判定可由线线垂直得到,注意线线是相交的,而要求证的线线垂直又可以转化为已知的线面垂直(有时来自面面垂直)来考虑.9.证明(1)如图,连接OE,O、E分别是AC、PC的中点,PAOE,又PA平

    11、面BDE,OE平面BDE,PA平面BDE.(2)PO底面ABCD,BD底面ABCD,POBD,又正方形中BDAC,POAC=O,BD平面PAC,而BD平面BDE,平面BDE平面PAC.10.解析(1)当a=2时,BD平面PAC.证明如下:当a=2时,矩形ABCD为正方形,则BDAC.PA平面ABCD,BD平面ABCD,BDPA.又ACPA=A,AC平面PAC,PA平面PAC,BD平面PAC.故当a=2时,BD平面PAC.(2)设M是符合条件的BC棱上的点.PA平面ABCD,DM平面ABCD,DMPA,又PMDM,PAPM=P,PA平面PAM,PM平面PAM,DM平面PAM,AM平面PAM,DMAM,点M是以AD为直径的圆和BC边的交点,半径r=AD2AB,即a4,a4,+).

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020-2021学年高一数学 专题强化练六 空间中的垂直关系(含解析).docx
    链接地址:https://www.ketangku.com/wenku/file-580959.html
    相关资源 更多
  • 专题 01中国文化读写专项:中国概况 中国简介- 2024年高考英语常考中国文化读写专练 素材积累.docx专题 01中国文化读写专项:中国概况 中国简介- 2024年高考英语常考中国文化读写专练 素材积累.docx
  • 专题 01 英美文化阅读理解专项:移民之国 早期美国 印第安人-2024年高考英语常考英美文化阅读专练 素材积累.docx专题 01 英美文化阅读理解专项:移民之国 早期美国 印第安人-2024年高考英语常考英美文化阅读专练 素材积累.docx
  • 专题 01 生物多样性保护--2023年高考英语外刊时文精读精练.docx专题 01 生物多样性保护--2023年高考英语外刊时文精读精练.docx
  • 专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(解析版).docx专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(解析版).docx
  • 专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(原卷版).docx专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(原卷版).docx
  • 专题 01 单项选择【考题猜想 】 -2023-2024学年七年级英语上学期期末考末大串讲(人教版)原卷版.docx专题 01 单项选择【考题猜想 】 -2023-2024学年七年级英语上学期期末考末大串讲(人教版)原卷版.docx
  • 专题 01申请信 (应用文写作)-2024年新高考英语一轮复习练小题刷大题提能力(解析版).docx专题 01申请信 (应用文写作)-2024年新高考英语一轮复习练小题刷大题提能力(解析版).docx
  • 专题 01构词法之组合练-2024年新高考英语一轮复习练小题刷大题提能力(原卷版).docx专题 01构词法之组合练-2024年新高考英语一轮复习练小题刷大题提能力(原卷版).docx
  • 专题牛一、摩擦力与二力平衡综合问题必刷题-2022-2023学年八年级下册物理《考点•题型 •技巧》精讲与精练高分突破专题系列(人教版).docx专题牛一、摩擦力与二力平衡综合问题必刷题-2022-2023学年八年级下册物理《考点•题型 •技巧》精讲与精练高分突破专题系列(人教版).docx
  • 专项集训8力学实验题-备战2022年中考物理热门专项集训.docx专项集训8力学实验题-备战2022年中考物理热门专项集训.docx
  • 专项讲解虚拟语气.docx专项讲解虚拟语气.docx
  • 专项训练(四)有关气体制取的题型(解析版).docx专项训练(四)有关气体制取的题型(解析版).docx
  • 专项训练(五)绿色植物的三大作用(原卷版).docx专项训练(五)绿色植物的三大作用(原卷版).docx
  • 专项训练(二)有关化学式的计算题型(原卷版).docx专项训练(二)有关化学式的计算题型(原卷版).docx
  • 专项训练(三)有关化学方程式的计算题型(原卷版).docx专项训练(三)有关化学方程式的计算题型(原卷版).docx
  • 专项训练(一) 电磁继电器 电磁铁(解析版).docx专项训练(一) 电磁继电器 电磁铁(解析版).docx
  • 专项训练(一) 电磁继电器 电磁铁(原卷版).docx专项训练(一) 电磁继电器 电磁铁(原卷版).docx
  • 专项训练教师版.docx专项训练教师版.docx
  • 专项训练学生版.docx专项训练学生版.docx
  • 专项训练四 立体几何(考点2 利用空间向量求空间角)(原卷版).docx专项训练四 立体几何(考点2 利用空间向量求空间角)(原卷版).docx
  • 专项训练五 解析几何(考点3 解析几何中的定点、定值问题)(原卷版).docx专项训练五 解析几何(考点3 解析几何中的定点、定值问题)(原卷版).docx
  • 专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(解析版).docx专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(解析版).docx
  • 专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(原卷版).docx专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(原卷版).docx
  • 专项训练三 概率与统计(考点4 统计与概率的综合应用)(解析版).docx专项训练三 概率与统计(考点4 统计与概率的综合应用)(解析版).docx
  • 专项训练三 概率与统计(考点4 统计与概率的综合应用)(原卷版).docx专项训练三 概率与统计(考点4 统计与概率的综合应用)(原卷版).docx
  • 专项训练4 化学用语.docx专项训练4 化学用语.docx
  • 专项训练3酸 碱 盐综合训练.docx专项训练3酸 碱 盐综合训练.docx
  • 专项训练3 化合价与化学式.docx专项训练3 化合价与化学式.docx
  • 专项训练2金属活动性顺序及应用.docx专项训练2金属活动性顺序及应用.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1