2020版高考数学培优考前练理科通用版练习:3-3 三角恒等变换与解三角形 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学培优考前练理科通用版练习:3-3三角恒等变换与解三角形 WORD版含解析 2020 高考 数学 考前 理科 通用版 练习 三角 恒等 变换 三角形 WORD 解析
- 资源描述:
-
1、3.3三角恒等变换与解三角形命题角度1利用正弦定理和余弦定理解三角形高考真题体验对方向1.(2019全国17)ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin Bsin C.(1)求A;(2)若2a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin Bsin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0A180,所以A=60.(2)由(1)知B=120-C,由题设及正弦定理得2sin A+sin(120-C)=2sin C,即62+32cos C+12si
2、n C=2sin C,可得cos(C+60)=-22.由于0C120,所以sin(C+60)=22,故sin C=sin(C+60-60)=sin(C+60)cos 60-cos(C+60)sin 60=6+24.2.(2019北京15)在ABC中,a=3,b-c=2,cos B=-12.(1)求b,c的值;(2)求sin(B-C)的值.解(1)由余弦定理b2=a2+c2-2accos B,得b2=32+c2-23c-12.因为b=c+2,所以(c+2)2=32+c2-23c-12.解得c=5,所以b=7.(2)由cos B=-12得sin B=32.由正弦定理得sin C=cbsin B=5
3、314.在ABC中,B是钝角,所以C为锐角.所以cos C=1-sin2C=1114.所以sin(B-C)=sin Bcos C-cos Bsin C=437.3.(2017全国17)ABC的内角A,B,C的对边分别为a,b,c.已知ABC的面积为a23sinA.(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求ABC的周长.解(1)由题设得12acsin B=a23sinA,即12csin B=a3sinA.由正弦定理得12sin Csin B=sinA3sinA.故sin Bsin C=23.(2)由题设及(1)得cos Bcos C-sin Bsin C=-12
4、,即cos(B+C)=-12.所以B+C=23,故A=3.由题设得12bcsin A=a23sinA,即bc=8.由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=33.故ABC的周长为3+33.4.(2017全国17)ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2B2.(1)求cos B;(2)若a+c=6,ABC的面积为2,求b.解(1)由题设及A+B+C=,得sin B=8sin2B2,故sin B=4(1-cos B).上式两边平方,整理得17cos2B-32cos B+15=0,解得cos B=1(舍去),cos B=1517.(
5、2)由cos B=1517得sin B=817,故SABC=12acsin B=417ac.又SABC=2,则ac=172.由余弦定理及a+c=6得b2=a2+c2-2accos B=(a+c)2-2ac(1+cos B)=36-21721+1517=4.所以b=2.5.(2017全国17)ABC的内角A,B,C的对边分别为a,b,c.已知sin A+3cos A=0,a=27,b=2.(1)求c;(2)设D为BC边上一点,且ADAC,求ABD的面积.解(1)由已知可得tan A=-3,所以A=23.在ABC中,由余弦定理得28=4+c2-4ccos23,即c2+2c-24=0.解得c=-6(
6、舍去),c=4.(2)由题设可得CAD=2,所以BAD=BAC-CAD=6.故ABD面积与ACD面积的比值为12ABADsin612ACAD=1.又ABC的面积为1242sinBAC=23,所以ABD的面积为3.典题演练提能刷高分1.在ABC中,角A,B,C对边分别为a,b,c,已知2ABAC=a2-(b+c)2.(1)求角A的大小;(2)若a=6,b=23,求ABC的面积.解(1)由已知2ABAC=a2-(b+c)2,得2bccos A=a2-(b+c)2,由余弦定理a2=b2+c2-2bccos A,得4bccos A=-2bc,所以cos A=-12.又0A0,化简得12sin C-32
7、cos C=0,即tan C=3.因为0C0,sin B=cos A,即cos2-B=cos A.A(0,),2-B0,2,2-B=A,即A+B=2.C=2.(2)设BD=x,CB=a.ABC=3,ACB=2,AC=3a,AB=2a,AD=2a+x.SACD=12ACADsin A=123a(2a+x)12=343,即a(2a+x)=3.在BCD中,由余弦定理可得CD2=BC2+BD2-2BCBDcosDBC,即x2+a2+ax=3.联立可解得x=a=1.即BD=1.命题角度2解三角形中的最值与范围问题高考真题体验对方向(2019全国18)ABC的内角A,B,C的对边分别为a,b,c.已知as
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-592991.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
