分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2021-2022学年高中数学北师大版选修2-2测评:第三章 1-2 函数的极值 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:603252
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:7
  • 大小:99.95KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022学年高中数学北师大版选修2-2测评:第三章 1-2函数的极值 WORD版含解析 2021 2022 学年 高中数学 北师大 选修 测评 第三 函数 极值 WORD 解析
    资源描述:

    1、第三章DISANZHANG导数应用1函数的单调性与极值1.2函数的极值课后篇巩固提升A组1.如图是函数f(x)=x3+bx2+cx+d的大致图像,则x12+x22等于()A.23B.43C.83D.123解析函数f(x)=x3+bx2+cx+d的图像过点(0,0),(1,0),(2,0),d=0,b+c+1=0,4b+2c+8=0.b=-3,c=2.f(x)=3x2+2bx+c=3x2-6x+2,且x1,x2是函数f(x)的两个极值点,即x1,x2是方程3x2-6x+2=0的两根,x12+x22=(x1+x2)2-2x1x2=4-43=83.答案C2.设函数f(x)在R上可导,其导函数为f(x

    2、),且函数f(x)在x=-2处取得极小值,则函数y=xf(x)的图像可能是()解析由函数f(x)在x=-2处取得极小值,可知x-2时f(x)0;x-2时,f(x)0,则当-2x0时,xf(x)0时,xf(x)0.答案C3.已知函数f(x)=x3-px2-qx的图像与x轴切于点(1,0),则f(x)有()A.极大值为427,极小值为0B.极大值为0,极小值为427C.极小值为-427,极大值为0D.极大值为-427,极小值为0解析f(x)=3x2-2px-q,f(1)=3-2p-q=0.又f(1)=1-p-q=0,由解得p=2,q=-1,即f(x)=x3-2x2+x,f(x)=3x2-4x+1,

    3、令3x2-4x+1=0,解得x1=13,x2=1.当x0;当13x1时,f(x)1时,f(x)0.当x=13时,f(x)有极大值427,当x=1时,f(x)有极小值0.答案A4.已知f(x)=3xex,则f(x)()A.在(-,+)上是增加的B.在(-,1)上是减少的C.有极大值3e,无极小值D.有极小值3e,无极大值解析由题意f(x)=3(1-x)ex,当x0,f(x)是增加的,当x1时,f(x)0,f(x)是减少的,则f(1)是函数的极大值,f(1)=3e,函数无极小值.故选C.答案C5.若函数f(x)=x3-6x2+9x-10-a有三个零点,则实数a的取值范围是()A.(-,-10)B.

    4、(-6,+)C.(-10,-6)D.(-,-10)(-6,+)解析令f(x)=0,得x3-6x2+9x-10=a,令g(x)=x3-6x2+9x-10,则g(x)=3x2-12x+9=3(x-1)(x-3).由g(x)=0,得x=1或x=3.当x3时,g(x)0,g(x)是增加的;当1x3时,g(x)0,g(x)是减少的.所以g(x)的极大值为g(1)=-6,g(x)的极小值为g(3)=-10.作出函数g(x)的大致图像如图所示.函数f(x)有三个零点,即直线y=a与函数g(x)的图像有三个交点,所以-10a0,即-(x-3)(x+2)0,即(x-3)(x+2)0,解得-2x3,令f(x)0,

    5、解得x3,所以函数f(x)的单调递增区间是(-2,3),单调递减区间是(-,2),(3,+).当x=3时,函数f(x)取得极大值,即函数f(x)的极大值点为3.答案(-2,3)37.若函数f(x)=x3+x2-ax-4在区间(-1,1)上恰有一个极值点,则实数a的取值范围是.解析由题意知,f(x)=3x2+2x-a,则f(-1)f(1)0,即(1-a)(5-a)0,解得1a0),且f(x)-9x=0的两根分别为1,4.(1)当a=3且曲线y=f(x)的图像过原点时,求f(x)的解析式;(2)若f(x)在(-,+)内无极值点,求a的取值范围.解(1)由f(x)=a3x3+bx2+cx+d,得f(

    6、x)=ax2+2bx+c.f(x)-9x=ax2+2bx+c-9x=0的两根为1,4,a+2b+c-9=0,16a+8b+c-36=0,a=3.a=3,b=-3,c=12.又f(x)=a3x3+bx2+cx+d过原点,d=0.f(x)=x3-3x2+12x.(2)a0,f(x)=a3x3+bx2+cx+d在(-,+)内无极值点等价于f(x)=ax2+2bx+c0在(-,+)内恒成立.由(1)知a+2b+c-9=0,16a+8b+c-36=0,2b=9-5a,c=4a.又f(x)0在(-,+)内恒成立,=(2b)2-4ac=(9-5a)2-16a2=9(a-1)(a-9)0.a1,9,即a的取值

    7、范围为1,9.10.已知函数f(x)=(x2+ax-2a2+3a)ex(xR),当aR且a23时,求函数的极值.解f(x)=x2+(a+2)x-2a2+4aex.令f(x)=0,解得x=-2a或x=a-2.由a23知,-2aa-2.以下分两种情况讨论:若a23,则-2aa-2.当x变化时,f(x),f(x)的变化情况如下表:x(-,-2a)-2a(-2a,a-2)a-2(a-2,+)f(x)+0-0+f(x)极大值极小值f(x)在(-,-2a),(a-2,+)内是增加的,在(-2a,a-2)内是减少的.函数f(x)在x=-2a处取得极大值f(-2a),且f(-2a)=3ae-2a;函数f(x)

    8、在x=a-2处取得极小值f(a-2),且f(a-2)=(4-3a)ea-2.若aa-2,当x变化时,f(x),f(x)的变化情况如下表:x(-,a-2)a-2(a-2,-2a)-2a(-2a,+)f(x)+0-0+f(x)极大值极小值f(x)在(-,a-2),(-2a,+)内是增加的,在(a-2,-2a)内是减少的.函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)ea-2;函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)=3ae-2a.B组1.已知函数f(x)=ax3+bx2+c,其导函数图像如图所示,则函数f(x)的极小值是()A.a+b+cB.

    9、8a+4b+cC.3a+2bD.c解析由导函数的图像可知,f(x)在(-,0)上是减少的,在(0,2)上是增加的,所以f(x)在x=0时取得极小值为c.答案D2.设函数f(x)=x3-4x+a,0a2,若f(x)的三个零点为x1,x2,x3,且x1x2-1B.x20D.x32解析函数f(x)=x3-4x+a,0a0;在x-233,233上,f(x)0.f-233是极大值,f233是极小值.又f(x)的三个零点为x1,x2,x3,且x1x2x3,可得x1-233,-233x2233,根据f(0)=a0,且f233=a-1639x20.答案C3.已知f(x)=x3-6x2+9x-abc,ab0;f

    10、(0)f(1)0;f(0)f(3)0.其中正确的结论序号为.解析设g(x)=x3-6x2+9x=0,则x1=0,x2=x3=3,其图像如图(1).要使f(x)=x3-6x2+9x-abc有3个零点,图(1)图(2)须将g(x)的图像向下平移,如图(2).又f(x)=3x2-12x+9=0时,x1=1,x2=3,即得f(1)是极大值,f(3)是极小值,所以f(0)f(1)0.答案4.已知函数f(x)=13x3+12(a-1)x2+ax(aR).(1)若f(x)在x=2处取得极值,求f(x)的单调递增区间.(2)若f(x)在区间(0,1)内有极大值和极小值,求实数a的取值范围.解f(x)=x2+(a-1)x+a(1)因为f(x)在x=2处取得极值,所以f(2)=0.所以4+2(a-1)+a=0.所以a=-23.所以f(x)=x2-53x-23=x+13(x-2).令f(x)0,则x+13(x-2)0,所以x2或x0,0-a-120,f(1)0,即=(a-1)2-4a0,-1a0,1+a-1+a0,所以0a0,h(x)是增加的;当x(1,e时,h(x)0,h(e)0.解得1m1e2+2.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022学年高中数学北师大版选修2-2测评:第三章 1-2 函数的极值 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-603252.html
    相关资源 更多
  • 人教版七年级下册生物4.7.3《拟定保护生态环境的计划》【教案】.docx人教版七年级下册生物4.7.3《拟定保护生态环境的计划》【教案】.docx
  • 人教版七年级下册期末课堂检测题 B卷练习题 word版本.docx人教版七年级下册期末课堂检测题 B卷练习题 word版本.docx
  • 人教版七年级下册期中考试专题--单项选择(无答案).docx人教版七年级下册期中考试专题--单项选择(无答案).docx
  • 人教版七年级下册数学第十章单元检测试卷(图片版附答案).docx人教版七年级下册数学第十章单元检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第六章实数检测试卷(图片版附答案).docx人教版七年级下册数学第六章实数检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第六章《实数》单元测试(扫描版无答案).docx人教版七年级下册数学第六章《实数》单元测试(扫描版无答案).docx
  • 人教版七年级下册数学第八章单元检测试卷(图片版).docx人教版七年级下册数学第八章单元检测试卷(图片版).docx
  • 人教版七年级下册数学第八章单元检测试卷(图片版).docx人教版七年级下册数学第八章单元检测试卷(图片版).docx
  • 人教版七年级下册数学第五章课后练习:5.2.2 平行线的判定.docx人教版七年级下册数学第五章课后练习:5.2.2 平行线的判定.docx
  • 人教版七年级下册数学第九章单元检测试卷(图片版附答案).docx人教版七年级下册数学第九章单元检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第七章单元检测试卷(图片版附答案).docx人教版七年级下册数学第七章单元检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第七章单元检测试卷(图片版附答案).docx人教版七年级下册数学第七章单元检测试卷(图片版附答案).docx
  • 人教版七年级下册数学第5章课后练习:5.4 平移.docx人教版七年级下册数学第5章课后练习:5.4 平移.docx
  • 人教版七年级下册数学第5章课后练习:5.3.2 命题、定理、证明.docx人教版七年级下册数学第5章课后练习:5.3.2 命题、定理、证明.docx
  • 人教版七年级下册数学第5章课后练习:5.3.1 平行线的性质.docx人教版七年级下册数学第5章课后练习:5.3.1 平行线的性质.docx
  • 人教版七年级下册数学期末复习--实数(图片版附答案).docx人教版七年级下册数学期末复习--实数(图片版附答案).docx
  • 人教版七年级下册数学教案:9.1.2不等式的性质.docx人教版七年级下册数学教案:9.1.2不等式的性质.docx
  • 人教版七年级下册数学教案9.3 一元一次不等式组.docx人教版七年级下册数学教案9.3 一元一次不等式组.docx
  • 人教版七年级下册数学教案8.3实际问题与二元一次方程组(第4课时).docx人教版七年级下册数学教案8.3实际问题与二元一次方程组(第4课时).docx
  • 人教版七年级下册数学教案 9.3一元一次不等式组和它的解法 (1).docx人教版七年级下册数学教案 9.3一元一次不等式组和它的解法 (1).docx
  • 人教版七年级下册数学学案10 (2)无答案.docx人教版七年级下册数学学案10 (2)无答案.docx
  • 人教版七年级下册数学学案10 (1)无答案.docx人教版七年级下册数学学案10 (1)无答案.docx
  • 人教版七年级下册数学 5.4平移 教案.docx人教版七年级下册数学 5.4平移 教案.docx
  • 人教版七年级下册平行线的判定教案.docx人教版七年级下册平行线的判定教案.docx
  • 人教版七年级下册小题之完形填空专项练习(无答案).docx人教版七年级下册小题之完形填空专项练习(无答案).docx
  • 人教版七年级下册小题之任务型阅读试题集锦及答案.docx人教版七年级下册小题之任务型阅读试题集锦及答案.docx
  • 人教版七年级下册地理教案:8.3《撒哈拉以南非洲》.docx人教版七年级下册地理教案:8.3《撒哈拉以南非洲》.docx
  • 人教版七年级下册地理教案:8.2《欧洲西部》.docx人教版七年级下册地理教案:8.2《欧洲西部》.docx
  • 人教版七年级下册地理教案:8.1《中东》.docx人教版七年级下册地理教案:8.1《中东》.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1