分享
分享赚钱 收藏 举报 版权申诉 / 18

类型2022-2023学年京改版八年级数学上册第十一章实数和二次根式定向攻克试题(详解版).docx

  • 上传人:a****
  • 文档编号:634286
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:18
  • 大小:285.69KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 改版 八年 级数 上册 第十一 实数 二次 根式 定向 攻克 试题 详解
    资源描述:

    1、八年级数学上册第十一章实数和二次根式定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在根式,中,与是同类二次根式的有()A1个B2个C3个D4个2、估计的值应在()A4和5之间B5和6之间C6和7

    2、之间D7和8之间3、式子有意义,则实数a的取值范围是()Aa-1Ba2Ca-1且a2Da24、运算后结果正确的是()ABCD5、若,则a,b,c的大小关系为()ABCD6、计算的结果正确的是()A1BC5D97、已知、为实数,且+44b,则的值是()ABC2D28、下列运算正确的是().ABCD9、下列说法中正确的有()个. 负数没有平方根,但负数有立方根的平方根是,的立方根是如果 ,那么x2算术平方根等于立方根的数只有1A1B2C3D410、下列二次根式中能与2合并的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果定义一种新运算,规定 adbc,请化

    3、简: _2、如果方程无实数解,那么的取值范围是_3、若a1,化简_4、+_5、比较大小,(填 或 号) _; _三、解答题(5小题,每小题10分,共计50分)1、阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数因此,的小数部分不可能全部地写出来,但可以用来表示的小数部分理由:因为的整数部分是1,将这个数减去其整数部分,差就是小数部分请解答:已知:的小数部分为,的小数部分为b,计算的值2、计算:3、计算:|0.771|4、定义:我们将与称为一对“对偶式”,因为,所以构造“对偶式”再将其相乘可以有效的将和中的“根号”去掉,于是二次根式除法可以这样计算:如像这样,通过分子,分母同乘

    4、以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化,根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)对偶式与之间的关系为 A互为相反数B互为倒数C绝对值相等D没有任何关系(2)已知,求的值;(3)解方程:(提示:利用“对偶式”相关知识,令)5、已知x+1,y1,求:(1)代数式xy的值;(2)代数式x3+x2y+xy2+y3的值-参考答案-一、单选题1、B【解析】【分析】二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式,继而可得出答案【详解】=5,=,=,故与是同类二次根式的有:,共2个,故选B.【考点】本题考查了同类二次根式的知

    5、识,解题的关键是掌握同类二次根式是化为最简二次根式后被开方数相同的二次根式2、D【解析】【分析】首先确定的值,进而可得答案【详解】解:2.224.42+37.472+38,故选:D【考点】此题主要考查实数的估算,解题的关键是熟知实数的大小及性质3、C【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,解得,a-1且a2,故答案为:C.【考点】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.4、C【解析】【分析】根据实数的运算法则即可求解;【详解】解:A.,故错误;B.,故错误;C.,故正确;D.,故错误;故选:C【考点】

    6、本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键5、C【解析】【分析】根据无理数的估算进行大小比较【详解】解:,又,故选:C【考点】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键6、A【解析】【分析】利用二次根式的乘除法则计算即可得到结果【详解】解:,故选:A【考点】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键7、C【解析】【分析】已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值【详解】已知等式整理得:0,a,b2,即ab1,则原式2,故选:C【考点】本题考查了实数的非负性

    7、,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键8、C【解析】【分析】根据二次根式的性质和法则逐一计算即可判断【详解】A. 是同类二次根式,不能合并,此选项错误;B. =18,此选项错误;C. ,此选项正确;D.,此选项错误;故选C【考点】本题考查二次根式的混合运算,熟练掌握计算法则是解题关键.9、A【解析】【分析】根据平方根、立方根、乘方的定义以及性质逐一进行分析判断即可【详解】 负数没有平方根,但负数有立方根,正确;的平方根是,的立方根是,故错误;任何实数的平方都不可能为负数,故错误;算术平方根等于立方根的数有0、1

    8、,故错误,所以正确的有1个,故选A【考点】本题考查了平方根、立方根,熟练掌握平方根及立方根的定义是解题的关键10、B【解析】【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可【详解】A、2,不能与2合并,故该选项错误;B、能与2合并,故该选项正确;C、3不能与2合并,故该选项错误;D、3不能与2合并,错误;故选B【考点】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键二、填空题1、3【解析】【分析】根据新运算的定义将原式转化成普通的运算,然后进行整式的混合运算即可【详解】根据题意得: (x1)(x+3)x(x+2)x2+3xx3x22x3,故答案为:3【考

    9、点】本题主要考查了整式的混合运算,根据新运算的定义将新运算转化为普通的运算是解决此题的关键2、【解析】【分析】先移项,再根据算术平方根的性质得到答案.【详解】,的结果是非负数,当k-20,方程无实数解,即k2,故答案为:k 【解析】【分析】根据二次根式比较大小的方法:作差法及平方法进行求解即可【详解】解:,1812,;,;故答案为;【考点】本题主要考查二次根式的大小比较,熟练掌握二次根式的大小比较的方法是解题的关键三、解答题1、1【解析】【分析】先估算2+的大小,算出2+的整数部分,再求出小数部分a,同理求出5的小数部分b,再进行求解【详解】解:23,42+5,2+的整数部分为4,2+的小数部

    10、分a=2+-4=-3-225-35-的整数部分为2,5-的小数部分b=5-2=3-a+b=+3-=1【考点】此题主要考查实数的估算,解题的关键是先估算出的大小2、【解析】【分析】直接化简二次根式,进而合并即可;【详解】=【考点】此题考查二次根式的混合运算,正确化简二次根式是解题关键3、【解析】【分析】根据算术平方根和立方根的定义计算求值即可;【详解】解:原式3+(70.1)(10.77),3+6.90.23,3+30,26;【考点】此题主要考查了算术平方根以及立方根的计算、绝对值的化简等知识,掌握相关运算法则是解题关键4、 (1)B(2)(3)【解析】【分析】(1)根据题意可把对偶式与相乘,进

    11、而问题可求解;(2)由题意易得,然后可得,进而代入求解即可;(3)令,然后方程两边同乘t,则有,进而可得,最后问题可求解(1)解:由题意得:,对偶式与互为倒数;故选B;(2)解:由题意得:,;(3)解:令,则方程两边同乘t得:,解得:,+得:,两边同时平方得:,解得:经检验:x=-1是方程的解【考点】本题主要考查二次根式的分母有理化及分式的值,熟练掌握二次根式的分母有理化及分式的值是解题的关键5、(1)2;(2)16.【解析】【分析】(1)直接代入平方差公式计算即可;(2)先计算出x+y和x2+y2,原式整理成(x2+y2)(x+y)代入计算即可;【详解】(1)xy=(+1)(-1)=()2-1=2;(2)x+1,y1,xy=2,x+y=+1+-1=2,x2+y2=(x+y)2-2xy=8,则x3+x2y+xy2+y3= x2(x+y)+y2(x+y)=(x2+y2)(x+y)=82=16.【考点】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年京改版八年级数学上册第十一章实数和二次根式定向攻克试题(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-634286.html
    相关资源 更多
  • 专题4.1 图形的相似(能力提升)(解析版).docx专题4.1 图形的相似(能力提升)(解析版).docx
  • 专题4.1 图形的相似(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题4.1 图形的相似(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题4.1 函数(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(北师大版).docx专题4.1 函数(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(北师大版).docx
  • 专题4.1 几何图形(知识讲解)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题4.1 几何图形(知识讲解)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题4.1 任意角和弧度制及任意角的三角函数(解析版).docx专题4.1 任意角和弧度制及任意角的三角函数(解析版).docx
  • 专题4-观察物体-2023年四年级数学下册暑假专项培优(北师大版).docx专题4-观察物体-2023年四年级数学下册暑假专项培优(北师大版).docx
  • 专题4-2数列的通项与求和 (专题分层练)(5种题型)解析版.docx专题4-2数列的通项与求和 (专题分层练)(5种题型)解析版.docx
  • 专题4-2数列的通项与求和 (专题分层练)(5种题型)原卷版.docx专题4-2数列的通项与求和 (专题分层练)(5种题型)原卷版.docx
  • 专题4 能量-教科版科学六年级上册.docx专题4 能量-教科版科学六年级上册.docx
  • 专题4 第17课时 动量观点在电磁感应中的应用.docx专题4 第17课时 动量观点在电磁感应中的应用.docx
  • 专题4 第16课时 电磁感应.docx专题4 第16课时 电磁感应.docx
  • 专题4 第15课时 直流电路与交流电路.docx专题4 第15课时 直流电路与交流电路.docx
  • 专题4 用导数研究函数的最值(解析版).docx专题4 用导数研究函数的最值(解析版).docx
  • 专题4 用导数研究函数的最值(原卷版).docx专题4 用导数研究函数的最值(原卷版).docx
  • 专题4 热学(解析版).docx专题4 热学(解析版).docx
  • 专题4 热学(原卷版).docx专题4 热学(原卷版).docx
  • 专题4 气体的制取实验(解析版).docx专题4 气体的制取实验(解析版).docx
  • 专题4 气体的制取实验(原卷版).docx专题4 气体的制取实验(原卷版).docx
  • 专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx
  • 专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题4 因式分解 2023年中考数学一轮复习专题训练(北京专用).docx专题4 因式分解 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题4 单词大闯关-首字母填空(205道题)-2021-2022学年七年级英语下学期期末备考冲刺满分专题(人教版).docx专题4 单词大闯关-首字母填空(205道题)-2021-2022学年七年级英语下学期期末备考冲刺满分专题(人教版).docx
  • 专题4 分子空间结构与物质性质-【知识清单】2022-2023学年高二化学期末单元复习知识清单(苏教版2019选择性必修2).docx专题4 分子空间结构与物质性质-【知识清单】2022-2023学年高二化学期末单元复习知识清单(苏教版2019选择性必修2).docx
  • 专题4 光现象 4.5光的色散(教师版).docx专题4 光现象 4.5光的色散(教师版).docx
  • 专题4 光现象 4.4光的折射(学生版).docx专题4 光现象 4.4光的折射(学生版).docx
  • 专题4 光现象 4.3平面镜成像(教师版).docx专题4 光现象 4.3平面镜成像(教师版).docx
  • 专题4 光现象 4.3平面镜成像(学生版).docx专题4 光现象 4.3平面镜成像(学生版).docx
  • 专题4 光现象 4.1 光的直线传播(教师版).docx专题4 光现象 4.1 光的直线传播(教师版).docx
  • 专题4 光现象 4.1 光的直线传播(学生版).docx专题4 光现象 4.1 光的直线传播(学生版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1