分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022-2023学年人教版九年级数学上册期末定向测试试题 卷(Ⅰ)(含答案及解析).docx

  • 上传人:a****
  • 文档编号:635305
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:24
  • 大小:429.46KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年人教版九年级数学上册期末定向测试试题 卷含答案及解析 2022 2023 学年 人教版 九年级 数学 上册 期末 定向 测试 试题 答案 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末定向测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组

    2、共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()ABCD2、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD3、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A30B90C120D1804、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD5、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,则点的坐标为()ABCD二、多选题(5小题,每小题4分,共计20分)1、已知关于的方程,下列说法不正确的是()A当时,方程无解B当时,方

    3、程有两个相等的实数根 线 封 密 内 号学级年名姓 线 封 密 外 C当时,方程有两个相等的实数根D当时,方程有两个不相等的实数根2、古希腊数学家欧几里得在几何原本中记载了用尺规作某种六边形的方法,其步骤是:在O上任取一点A,连接AO并延长交O于点B;以点B为圆心,BO为半径作圆弧分别交O于C,D两点;连接CO,DO并延长分别交O于点E,F;顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE连接AD,EF,交于点G,则下列结论正确的是 AAOE的内心与外心都是点GBFGAFOAC点G是线段EF的三等分点DEFAF3、下列关于圆的叙述正确的有( )A对角互补的四边形是圆内接四边形

    4、B圆的切线垂直于圆的半径C正多边形中心角的度数等于这个正多边形一个外角的度数D过圆外一点所画的圆的两条切线长相等4、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为()A1B3C5D75、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有()A4a+b=0B9a+c3bC7a3b+2c0D若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1y3y2E若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x2第卷(非选择题 65分)三、

    5、填空题(5小题,每小题5分,共计25分)1、如果关于的一元二次方程的一个解是,那么代数式的值是_2、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_3、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为_.4、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为_ 线 封 密 内 号学级年名姓 线 封 密 外 5、如图,ABC内接于O,CAB=30,CBA=45,CDAB于点D,若O的半径为2,则CD的长为_四、解答题(5小题,每小题8分,共计40分)1、已知关

    6、于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.2、已知,是一元二次方程的两个实数根(1)求k的取值范围;(2)是否存在实数k,使得等式成立?如果存在,请求出k的值,如果不存在,请说明理由3、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);4、若二次函数图像经过,两点,求、的值.5、已知关于x的一元二次方程有两个实数根(1)求k的取值范围;(2)若,求k的值-参考答案-一、单选题1、B【解析】【分析】由题意可知,每个同学需赠送出(x-1)件标本,x名同学需赠送出x(x

    7、-1) 件标本,即可列出方程【详解】解:由题意可得,x(x-1)=182,故选B【考点】本题主要考查了一元二次方程的应用,审清题意、确定等量关系是解答本题的关键2、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交

    8、点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质3、C【解析】【分析】根据图形的对称性,用360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故选C【考点】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数倍是解题的关键4、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的

    9、对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0 线 封 密 内 号学级年名姓 线 封 密 外 x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示

    10、从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上5、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作

    11、出图形是解题的关键二、多选题1、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可【详解】关于的方程,A当k= 0时,x- 1=0,则x=1,故此选项错误,符合题意;B当k = 1时,- 1 = 0,x=1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,则,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k= 0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键2、ABC【解析】【分析】证明AOE是等边三角形,EFOA,ADOE,可判断A;证明AG

    12、F=AOF=60,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:如图,在正六边形AEDBCF中,AOF=AOE=EOD=60,OF=OA=OE=OD,AOF,AOE,EOD都是等边三角形, AF=AE=OE=OF,OA=AE=ED=OD,四边形AEOF,四边形AODE都是菱形,ADOE,EFOA,AOE的内心与外心都是点G,故A正确,EAF=120,EAD=30,FAD=90,AFE=30,AGF=AOF=60,故B正确,GAE=GEA=30,GA=GE,FG=2AG,FG=2GE,点G是线段EF的三等分点,故C正确,

    13、AF=AE,FAE=120,EF=AF,故D错误,故答案为:ABC【考点】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形3、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项

    14、正确;D. 过圆外一点引的圆的两条切线,则切线长相等,D选项正确故选:ACD【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念4、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为非负整数分别求出a的取值范围,即可得答案 线 封 密 内 号学级年名姓 线 封 密 外 【详解】关于的一元二次方程有两个不相等的实数解,解得:,解得:,关于的分式方程的解为非负整数,且,解得:且,且a3,是整数,a=1或5,故选:AC【考点】本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母

    15、不为0的隐含条件,避免漏解5、ABE【解析】【分析】根据抛物线的对称轴为直线x2,则有4a+b0,可得A正确;根据二次函数的对称性得到当x3时,函数值大于0,则9a+3b+c0,即9a+c3 b,可得B正确;由于x1时,y0,则ab+c0,易得c5a,所以7a-3b+2c9 a,再根据抛物线开口向下得a0,于是有7a3b+2c0,可得C错误;利用抛物线的对称性得到(3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线 y3,然后依据函数图象进行判断可得E正确;综上即可得答案【详解】A项:x 2,4a+b0,故A正确B项:抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,另一个

    16、交点为(5,0),抛物线开口向下,当x3时,y0,即9a+3b+c0,9a+c3b,故B正确C项:抛物线与x轴的一个交点为(1,0),ab+c0b4a,a+4a+c0,即c5a,7a3b+2c7a+12a10a9a,抛物线开口向下,a0,7a3b+2c0,故C错误;D项:抛物线的对称轴为x2,C(7,)在抛物线上,点(3,)与C(7,)关于对称轴x2对称, 线 封 密 内 号学级年名姓 线 封 密 外 A(3,)在抛物线上,=,3 12 ,在对称轴的左侧,抛物线开口向下,y随x的增大而增大, ,故D错误E项:方程a(x+1)(x5)0的两根为x1或x5,过y3作x轴的平行线,直线y3与抛物线的

    17、交点的横坐标为方程的两根,抛物线与x轴交点为(-1,0),(5,0),依据函数图象可知:15,故E正确故答案为:ABE【考点】本题考查了二次函数图象与系数的关系:二次函数y=ax+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数 a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与 y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b4ac0时,抛物线与x轴有2个交点;=b4ac=0时,抛物线与x轴有1个交点;=

    18、b4 ac0时,抛物线与x轴没有交点三、填空题1、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题【详解】解:关于的一元二次方程的一个解是,故答案为:2020【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义2、32【解析】【分析】如图,作CHAB于H交O于E、F,求出A、B的坐标,根据勾股定理求出AB,再由SABCABCHOBAC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出即可【详解】如图,作CHAB于H交O于E、F, 线 封 密 内 号学级年名姓 线 封 密 外 直线yx

    19、+6与x轴、y轴分别交于A、B两点,当y=0时,可得0=x+6,解得:x=8,A(8,0),当x=0时,得y=6,B(0,6),OA8,OB6,10,C(1,0),AC=8+1=9,SABCABCHOBAC,CH=5.4,FHCH+CF=5.4+16.4,即C上到AB的最大距离为6.4,PAB面积的最大值106.432,故答案为32【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求高、求圆心到直线的距离等知识,解此题的关键是求出圆上的点到直线AB的最大距离3、【解析】【分析】由题意抛物线过点(40,0),顶点坐标为(20,10),设抛物线的解析式为,从而求出a的值,然后确定抛物线的解析

    20、式【详解】解:依题意得此函数解析式顶点为,设解析式为,又函数图象经过,.故答案为 .【考点】本题主要考查用待定系数法确定二次函数的解析式,解题时应根据情况设抛物线的解析式从而使解题简单,此题设为顶点式比较简单.4、【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】直接根据“上加下减,左加右减”进行计算即可【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:【考点】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键5、【解析】【分析】连接OA,OC,根据COA=2CBA=90可求出AC=,然后在R

    21、tACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,COA=2CBA=90,在RtAOC中,AC=,CDAB,在RtACD中,CD=ACsinCAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.四、解答题1、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数

    22、根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1, 线 封 密 内 号学级年名姓 线 封 密 外 (x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程2、(1);(2)【解析】【分析】(1)根据方程的系数结合0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系

    23、可得出x1x22,x1x2k2,结合,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论【详解】解:(1)一元二次方程有两个实数根,解得;(2)由一元二次方程根与系数关系,即,解得又由(1)知:,【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有两个实数根”;(2)根据根与系数的关系结合,找出关于k的方程3、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya

    24、(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选

    25、择设其解析式为交点式来求解4、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得, 解得: b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.5、 (1) ;(2) 【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可【详解】解:(1)由题意可知,整理得:,解得:,的取值范围是:故答案为:(2)由题意得:,由韦达定理可知:,故有:,整理得:,解得:,又由(1)中可知,的值为故答案为:【考点】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册期末定向测试试题 卷(Ⅰ)(含答案及解析).docx
    链接地址:https://www.ketangku.com/wenku/file-635305.html
    相关资源 更多
  • 专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx
  • 专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx
  • 专题09 平面直角坐标系(解析版).docx专题09 平面直角坐标系(解析版).docx
  • 专题09 平面直角坐标系(原卷版).docx专题09 平面直角坐标系(原卷版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx
  • 专题09 平面直角坐标系与函数基础(解析版).docx专题09 平面直角坐标系与函数基础(解析版).docx
  • 专题09 平面直角坐标系与函数基础(考点回归).docx专题09 平面直角坐标系与函数基础(考点回归).docx
  • 专题09 平面直角坐标系与函数基础(原卷版).docx专题09 平面直角坐标系与函数基础(原卷版).docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx
  • 专题09 平面向量、不等式及复数(解析版).docx专题09 平面向量、不等式及复数(解析版).docx
  • 专题09 平面向量、不等式及复数(原卷版).docx专题09 平面向量、不等式及复数(原卷版).docx
  • 专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx
  • 专题09 导数的概念意义及运算(考点清单)(解析版).docx专题09 导数的概念意义及运算(考点清单)(解析版).docx
  • 专题09 导数的概念意义及运算(考点清单)(原卷版).docx专题09 导数的概念意义及运算(考点清单)(原卷版).docx
  • 专题09 导数大题训练理科(教师版).docx专题09 导数大题训练理科(教师版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx
  • 专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx
  • 专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx
  • 专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1