分享
分享赚钱 收藏 举报 版权申诉 / 18

类型2022-2023学年人教版九年级数学上册第二十一章一元二次方程定向练习试题(含详细解析).docx

  • 上传人:a****
  • 文档编号:635335
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:18
  • 大小:255.35KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 九年级 数学 上册 第二十一 一元 二次方程 定向 练习 试题 详细 解析
    资源描述:

    1、九年级数学上册第二十一章一元二次方程定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若、为方程2x2-5x-1=0的两个实数根,则的值为()A-13B12C14D152、设,是方程的两个实数根,则

    2、的值为()A2020B2021C2022D20233、已知一元二次方程有两个相等的实数根,则的值为()ABCD4、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为()Ax(x+1)1056Bx(x1)10562Cx(x1)1056D2x(x+1)10565、用配方法解方程的根为()A2B-2C-2+D2-6、方程的解是()A2或0B2或0C2D2或07、下列方程中,有两个相等实数根的是()ABCD8、如图,在中,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为,点Q的速度为,点Q移动到C点后停止,

    3、点P也随之停止运动,当的面积为时,则点P运动的时间是()AB或CD9、下列方程中,有实数根的方程是()ABCD10、某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为()A5B6C7D8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、菱形的一条对角线长为8,其边长是方程的一个根,则该菱形的周长为_2、如图,在RtABC中,C=90,AC=8cm,BC=2cm,点P在边AC上,以2cm/s的速度从点A向点C移动,点Q在边CB上,以1cm/s的速度从点C向点B移动点P、Q同时出发,且当一点移动到终点时,

    4、另一点也随之停止,连接PQ,当PQC的面积为3cm2时,P、Q运动的时间是_秒3、若关于x的一元二次方程有实数根,则n的取值范围是_4、已知3人患流感,经过两轮传染后,患流感总人数为108人,则平均每人每轮感染_个人5、设,是方程的两个实数根,则的值为_三、解答题(5小题,每小题10分,共计50分)1、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值2、已知方程的一根是,求它的另

    5、一根及的值3、已知:如图所示,在ABC中,B90,AB5cm,BC7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动(1)如果P、Q分别从A、B同时出发,那么几秒后,PBQ的面积等于4cm2?(2)在(1)中,PQB的面积能否等于7cm2?请说明理由4、某旅游园区对团队入园购票规定:如团队人数不超过人,那么这个团队需交200元入园费;若团队人数超过人,则这个团队除了需交200元入园费外,超过部分游客还要按每人元交入园费,下表是两个旅游团队人数和入园缴费情况:旅游团队名称团队人数(人)入园费

    6、用(元)旅游团队180350旅游团队245200根据上表的数据,求某旅游园区对团队入园购票规定的人是多少?5、某公司前年缴税40万元,今年缴税48.4万元该公司缴税的年均增长率为多少?-参考答案-一、单选题1、B【解析】【详解】解:、为方程2x2-5x-1=0的两个实数根,因此可得22=5+1,代入22+3+5=5+1+3+5=5(+)+3+1=5+3(-)+1=12;故选B【考点】此题主要考查了一元二次方程的根与系数的关系,关键是利用一元二次方程的一般式,得到根与系数的关系x1+x2=-,x1x2=,然后变形代入即可2、B【解析】【分析】由题意根据一元二次方程的解及根与系数的关系可得出,将其

    7、代入中即可得出答案【详解】解:,是方程的两个实数根,=2022-1=2021故选:B【考点】本题考查根与系数的关系以及一元二次方程的解,根据一元二次方程的解及根与系数的关系找出是解题的关键3、C【解析】【分析】根据题意可得方程的判别式=0,进而可得关于k的方程,解方程即得答案【详解】解:由题意,得:,解得:故选:C【考点】本题考查了一元二次方程的根的判别式,属于基础题型,熟知一元二次方程的根的判别式与方程根的个数的关系是解题关键4、C【解析】【分析】如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名同学,那么总共送的张数应该是x(x-1)张,即可列出方程【详解】解:全班有x名同学,每

    8、名同学要送出(x-1)张;又是互送照片,总共送的张数应该是x(x-1)=1056故选C【考点】本题考查一元二次方程在实际生活中的应用计算全班共送多少张,首先确定一个人送出多少张是解题关键5、B【解析】【分析】根据用配方法解方程的步骤,先简化系数、移项、配方等步骤可解出方程的解.【详解】配方得,开方得,即,故选B.【考点】此题考查了一元二次方程-配方法,熟练掌握完全平方公式是解决此题的关键.6、B【解析】【分析】首先提公因式,再根据平方差公式分解因式,即可得出结论【详解】解:,或或,故选:B【考点】本题考查了高次方程,运用类比思想将高次方程转化为二次方程或一次方程是解题的关键7、A【解析】【分析

    9、】根据根的判别式逐一判断即可【详解】A.变形为,此时=4-4=0,此方程有两个相等的实数根,故选项A正确;B.中=0-4=-40,此时方程无实数根,故选项B错误;C.整理为,此时=4+12=160,此方程有两个不相等的实数根,故此选项错误;D.中,=40,此方程有两个不相等的实数根,故选项D错误.故选:A.【考点】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键8、A【解析】【分析】设出动点P,Q运动t秒,能使的面积为,用t分别表示出BP和BQ的长,利用三角形的面积计算公式即可解答【详解】解:设动点P,Q运动t秒,能使的面积为,则BP为(8-t)cm,BQ为2tcm,由三角

    10、形的面积公式列方程得(8-t)2t=15,解得t1=3,t2=5(当t2=5,BQ=10,不合题意,舍去)动点P,Q运动3秒,能使的面积为故选A【考点】本题考查了一元二次方程的应用借助三角形的面积计算公式来研究图形中的动点问题9、D【解析】【分析】先移项,再根据算术平方根的非负性即可判断A;根据根的判别式即可判断B;根据算术平方根的非负性得出且,即可判断C;方程两边都乘以,再求出方程的解,进行检验后即可判断D【详解】解:A、,移项,得,不论为何值,此方程无实数根,故本选项不符合题意;B、,此方程无解,即原方程无实数根,故本选项不符合题意;C、,且,此时不存在,即原方程无实数根,故本选项不符合题

    11、意;D、,方程两边都乘以,得,解得:,经检验是增根,是原方程的解,即原方程有实数根,故本选项符合题意;故选:D【考点】本题考查了解无理方程,算术平方根,四次方根,解分式方程等知识点,能把无理方程转化成有理方程和把分式方程转化成整式方程是解此题的关键10、B【解析】【分析】设有x个班级参加比赛,根据题目中的比赛规则,可得一共进行了场比赛,即可列出方程,求解即可【详解】解:设有x个班级参加比赛,解得:(舍),则共有6个班级参加比赛,故选:B【考点】本题考查了一元二次方程的应用,解题关键是读懂题意,得到比赛总数的等量关系二、填空题1、20【解析】【分析】解方程得出x=4,或x=5,分两种情况:当AB

    12、=AD=4时,4+4=8,不能构成三角形;当AB=AD=5时,5+58,即可得出菱形ABCD的周长【详解】解:如图所示: 四边形ABCD是菱形,AB=BC=CD=AD,因式分解得:(x-4)(x-5)=0,解得:x=4,或 x=5,分两种情况:当AB=AD=4时,4+4=8,不能构成三角形;当AB=AD=5时,5+58,可构成三角形;菱形ABCD的周长=4AB=20故答案为:20【考点】本题考查了菱形的性质、一元二次方程的解法、三角形的三边关系;熟练掌握菱形的性质,由三角形的三边关系得出AB是解决问题的关键2、1【解析】【分析】设P、Q运动的时间是秒,根据已知条件得到cm,cm ,则cm ,根

    13、据三角形面积公式列出方程,解方程即可求解【详解】解:设P、Q运动的时间是秒,则cm,cm ,cmPQC的面积为3cm2,即,解得或(不合题意,舍去),当PQC的面积为3cm2时,P、Q运动的时间是1秒故答案为:1【考点】本题考查了一元二次方程应用动点问题,三角形的面积,正确的理解题意是解题的关键3、n0【解析】【分析】根据平方的非负性可得结果【详解】解:关于x的一元二次方程有实数根,而,n0,故答案为:n0【考点】本题考查了一元二次方程的解,掌握根的判别方法是解题的关键4、5【解析】【分析】设1个人传染x人,第一轮共传染(x+1)人,第二轮共传染(x+1)2人,由此列方程解答,再进一步求问题的

    14、答案【详解】解:设每个人传染x人,根据题意列方程得,3(x+1)2=108,解得:x1=5,x2=8(不合题意,舍去),故答案为:5【考点】此题考查了一元二次方程的应用,解答此题的关键是找出题目中蕴含的数量关系:1个人传染x人,n轮共传染(x+1)n人5、【解析】【分析】由韦达定理可分别求出与的值,再化简要求的式子,代入即可得解【详解】解:由方程可知,故答案为:【考点】本题考查一元二次方程根与系数的关系,利用韦达定理可简便运算三、解答题1、 (1)m的值为1或-2(2)-2m1(3)m或m【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根

    15、,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)

    16、2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.2、,【解析】【分析】把x1=2代入已知方程,列出关于k的一元一次方程,通过解方程求得k的值;由根与系数的关系来求方程的另一根【详解】设它的另一根为,根据题意得,解得,【考点】考查一元二次方程根与系数的关系, 熟记公式是解决本题的关键.3、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,PBQ的面积等于4cm2,根据点P从A点开始沿A

    17、B边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看PBQ的面积能否等于7cm2,只需令2x(5x)7,化简该方程后,判断该方程的与0的关系,大于或等于0则可以,否则不可以【详解】解:(1)设经过x秒以后PBQ面积为4cm2,根据题意得(5x)2x4,整理得:x25x+40,解得:x1或x4(舍去)答:1秒后PBQ的面积等于4cm2;(2)由(1)同理可得(5x)2x7整理,得x25x+70,因为b24ac25280,所以,此方程无解所以PBQ的面积不可能等于7cm2【考点】本题主要考查一元二次方程的应用,关键在于理解

    18、清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在4、50【解析】【分析】先根据旅游团队1的入园费用等于200元入园费超出的部分的费用列出方程,解得,再根据旅游团队2的数据可知a45,由此可求得a的值【详解】解:由题意可得:,解得,由旅游团队2的数据可知a45,a=50,答:某旅游园区对团队入园购票规定的人是50人【考点】本题考查了一元二次方程的应用,理解题意,根据旅游团队1的入园费用等于200元入园费超出的部分的费用列出方程是解决本题的关键5、10%【解析】【分析】设公司缴税的年平均增长率为x,根据增长后的纳税额增长前的纳税额(1增长率),即可得到去年的纳税额是40(1x)万元,今年的纳税额是40(1x)2万元,据此即可列出方程求解【详解】解:设该公司缴税的年平均增长率为x,依题意得40(1x)248.4解方程得x10.110%,x22.1(舍去)所以该公司缴税的年平均增长率为10%【考点】本题运用增长率(下降率)的模型解题读懂题意,找到等量关系准确的列出式子是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册第二十一章一元二次方程定向练习试题(含详细解析).docx
    链接地址:https://www.ketangku.com/wenku/file-635335.html
    相关资源 更多
  • 人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx
  • 人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx
  • 人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx
  • 人教版九年级化学(上)专题化学用语练习题(无答案).docx人教版九年级化学(上)专题化学用语练习题(无答案).docx
  • 人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx
  • 人教版九年级化学(上册)氧气的性质探究实验说课设计.docx人教版九年级化学(上册)氧气的性质探究实验说课设计.docx
  • 人教版九年级化学第四单元课题4《化学式与化合价》.docx人教版九年级化学第四单元课题4《化学式与化合价》.docx
  • 人教版九年级化学第四单元课题3《水的组成》.docx人教版九年级化学第四单元课题3《水的组成》.docx
  • 人教版九年级化学第四单元课题2《水的净化》.docx人教版九年级化学第四单元课题2《水的净化》.docx
  • 人教版九年级化学第四单元课题1《爱护水资源》.docx人教版九年级化学第四单元课题1《爱护水资源》.docx
  • 人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1