分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022-2023学年度人教版九年级数学上册期中定向攻克试题 卷(Ⅱ)(解析卷).docx

  • 上传人:a****
  • 文档编号:640627
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:25
  • 大小:667.76KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年度人教版九年级数学上册期中定向攻克试题 卷解析卷 2022 2023 学年 度人 九年级 数学 上册 期中 定向 攻克 试题 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向攻克试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无

    2、论x取何实数,y的值都小于0B该抛物线的顶点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则2、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接BG和DE,试用旋转的思想说明线段BG与DE的关系()ADEBGBDEBGCDEBGDDEBG3、方程y2-a有实数根的条件是()Aa0Ba0Ca0Da为任何实数4、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是()ABCD5、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点

    3、火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m二、多选题(5小题,每小题4分,共计20分)1、如图所示,抛物线y=ax2+bx+c的顶点为(1,3),以下结论中不正确的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 Ab24ac0B4a2b+c0C2cb=3Da+3=c2、在图形旋转中,下列说法正确的是()A在图形上的每一点到旋转中心的距离相等B图形上每一点转动的角度相同C图形上可能存在不动的点D图形上任意两点的连线与其对应两点的连线长度相等3、若是方程的一个根,则的值是()A1BC3D4、下列关于x的一元二次方程中,没有两个不相等的实数根的方程

    4、是()ABCD5、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在平面直角坐标系中,坐标原点为O,抛物线ya(x2)21(a0)的顶点为A,过点A作y轴的平行线交抛物线于点B,连接AO、BO,则AOB的面积为_2、对于任意实数a、b,定义一种运算:,若,则x的值为_3、如果关于的一元二次方程有实数根,那么的取值范围是_4、如果关于的一元二次方程的一个解是,

    5、那么代数式的值是_5、已知方程的一根为,则方程的另一根为_四、解答题(5小题,每小题8分,共计40分)1、如图,直角三角形中,为中点,将绕点旋转 线 封 密 内 号学级年名姓 线 封 密 外 得到一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰

    6、三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由2、解方程:(1)2x25x30;(2)x22x2x1;(3)x23x203、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?4、如图是两条互相垂直的街道, 且A到B, C的距离都是4千米. 现甲从B地走向A地, 乙从A地走向C地, 若两人同时出发且速度都是4千米/时, 问何时两人之间的距离最近?5、每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理

    7、记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为: 直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元) ,求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态-参考答案-一、单选题1、C 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,

    8、当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随x的增大而增大,故正确;D抛物线上有两点,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【考点】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键2、A【解析】【分析】根据四边形ABCD为正方形,得出BC=DC,BCD=90,根据四边形CEFG为正方形,得出GC=EC,GCE=90,再证BCG=DCE,BCG与DCE具有可旋转的特征即可【详解】解:四边形ABCD为正方形,BC=DC,BCD=90,四边形CEFG为正方形,GC=EC,GCE=90,BCG+GC

    9、D=GCD+DCE=90,BCG=DCE,BCG绕点C顺时针方向旋转90得到DCE,BG=DE,故选项A【考点】本题考查图形旋转特征,正方形性质,三角形全等条件,同角的余角性质,掌握图形旋转特征,正方形性质,三角形全等条件是解题关键3、A【解析】【分析】根据平方的非负性可以得出a0,再进行整理即可【详解】解:方程y2a有实数根,a0(平方具有非负性),a0;故选:A【考点】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出a04、D【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y

    10、=2x2向右平移2个单位所得抛物线是y=2(x2)2;由“上加下减”的原则可知,抛物线y=2(x2)2向下平移1个单位所得抛物线是y=2(x2)21.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.5、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知

    11、火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质二、多选题1、ABC【解析】【分析】根据抛物线的图象与性质即可判断【详解】抛物线与x轴有两个交点,0,b2-4ac0,故A选项错误;x=-2时,y0,x=-2时,y=4a-2b+c0,故B选项错误;顶点为(-1,3),y=a-b+c=3,把代入得,化简得,故C选项错误;把代入得,化简得,故D选项正确;不正确的是ABC;故选:ABC【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型 线 封 密

    12、 内 号学级年名姓 线 封 密 外 2、BCD【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此选项不符合题意;B、 由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、 由旋转的性质可得,图形上对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD【点睛】本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等3、AD【解析】【分析】把代入

    13、方程中,得到关于的一元二次方程,然后解方程即可【详解】解:把代入方程中,得:,解得:,所以的值为1或,故选AD【点睛】本题考查了一元二次方程的解,解题的关键是能得出关于的一元二次方程4、ABC【解析】【分析】根据根的判别式=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用【详解】解:A、=b2-4ac=02-414=-160,此方程没有实数根,故本选项符合题意;B、=b2-4ac=(-4)2-414=0,此方程有两个相等的实数根,故本选项符合题意;C、=b2-4ac=12-413=-110,此方程没有实数根,故本选项符合题意;D、=b2-4ac=22-41(-1

    14、)=80,此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC【点睛】本题考查了一元二次方程根的判别式的知识此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根 线 封 密 内 号学级年名姓 线 封 密 外 5、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转18

    15、0即可得到图(2)故选BCD【点睛】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律三、填空题1、【解析】【分析】先求得顶点A的坐标,然后根据题意得出B的横坐标,把横坐标代入抛物线,得出B点坐标,从而求得A、B间的距离,最后计算面积即可【详解】设AB交x轴于C抛物线线ya(x2)21(a0)的顶点为A,A(2,1),过点A作y轴的平行线交抛物线于点B,B的横坐标为2,OC=2把x=2代入得y=-3,B(2,-3),AB=1+3=4,故答案为:4【考点】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标是解题的关键2、或2【解析】 线 封 密 内 号学级年名姓 线

    16、 封 密 外 【分析】根据新定义的运算得到,整理并求解一元二次方程即可【详解】解:根据新定义内容可得:,整理可得,解得,3、【解析】【分析】由一元二次方程根与系数的关键可得: 从而列不等式可得答案【详解】解: 关于的一元二次方程有实数根, 故答案为:【考点】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键4、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题【详解】解:关于的一元二次方程的一个解是,故答案为:2020【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义5、【解析】【分析

    17、】设方程的另一个根为c,再根据根与系数的关系即可得出结论【详解】解:设方程的另一个根为c, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为【考点】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键四、解答题1、(1),S的最大值为;(2)存在,m的值为或或或.【解析】【分析】(1)分、和三种情况分别表示出有关线段求得两个变量之间的函数关系即可(2)分两种情形:如图中,由题意点在上运动的时间与点在上运动的时间相等,即当时,当时,当时,分别构建方程求解即可如图中,作于首先证明,根据构建方程即可解决问题【详解】解:(1)如图中,当时,点与点都在上运动,此时两平行线截平

    18、行四边形的面积为如图中,当时,点在上运动,点仍在上运动则,而,故此时两平行线截平行四边形的面积为:,如图中,当时,点和点都在上运动 线 封 密 内 号学级年名姓 线 封 密 外 则,此时两平行线截平行四边形的面积为故关于的函数关系式为,当时,S随t增大而增大,当时,S随t增大而增大,当时,S随t增大而减小,当t=8时,S最大,代入可得S=;(2)如图中,由题意点在上运动的时间与点在上运动的时间相等,当时,则有,解得,当时,则有,解得,当时,则有,解得如图中,作于在RtCHR中,四边形是平行四边形,四边形是矩形,当时,则有,解得,综上所述,满足条件的m的值为或或或【点睛】本题属于四边形综合题,考

    19、查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴 线 封 密 内 号学级年名姓 线 封 密 外 题2、 (1)x1,x23(2)x12,x22(3)x11,x22【解析】【分析】(1)直接用公式法求解;(2)用配方法求解;(3)用因式分解法求解(1)解:a2,b5,c3,b24ac(5)242(3)490,x,x1,x23;(2)解:移项,得x24x1,配方,得x24x414,即(x2)23,两边开平方,得x2,即x2或x2,x12,x22;(3)解:原方程可变形为(x1)(x2)0,x10或

    20、x20,x11,x22【点睛】本题考查一元二次方程解法,根据方程的特征,选择适当方法求解是解题的关键3、(1);(2)不亏本,见解析【解析】【分析】(1)设这种药品每次降价的百分率是,根据该药品的原价及经过两次降价后的价格,即可得出关于的一元二次方程,求解即可得出结论;(2)根据经过连续三次降价后的价格=经过连续两次降价后的价格(1-20%),即可求出再次降价后的价格,将其与100元进行比较后即可得出结论【详解】(1)解:设每次下降的百分率为, 依题意,得: ,解得:(不合题意,舍去)答:这种药品每次降价的百分率是20%;(2)128(1-20%)=102.4,102.4100,按此降价幅度再

    21、一次降价,药厂不会亏本【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键4、当t=(在0t1的范围内)时, S的最小值为千米【解析】【分析】设两人均出发了t时,根据勾股定理建立甲、乙之间的距离与时间t的函数关系式,然后求出二次函数在一定的取值范围内的最值即可得解.【详解】设两人均出发了t时, 则此时甲到A地的距离是(44t)千米, 乙离A地的距离是4t千米, 由勾股定理, 得甲, 乙两人间的距离为:S=,当t=(在0t1的范围内)时, S的最小值为千米.【点睛】本题考查二次函数的实际应用,关键在于根据题意写出二次

    22、函数关系式,再利用求二次函数的最值方法求最值.5、(1)y,(2)w,在这15天中,第9天销售额达到最大,最大销售额是3600元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态【解析】【分析】(1)用待定系数法可求与的函数关系式;(2)利用总销售额=销售单价销售量,分三种情况,找到(元)关于(天)的函数解析式,然后根据函数的性质即可找到最大值(3)先根据第(2)问的结论判断出在这三段内哪一段内会出现亏损,然后列出不等式求出x的范围,即可找到答案【详解】解:(1)当 时,设直线的表达式为 将 代入到表达式中得 解得 当时,直线的表达式为 y,(2)由已知得:wpy当1x5时,wpy(

    23、x15)(20x180)20x2120x270020(x3)22880,当x3时,w取最大值2880,当5x9时,w10(20x180)200x1800,x是整数,2000,当5x9时,w随x的增大而增大,当x9时,w有最大值为200918003600,当9x15时,w10(60x900)600x9000,6000,w随x的增大而减小,又x9时,w600990003600当9x15时,W的最大值小于3600综合得:w, 线 封 密 内 号学级年名姓 线 封 密 外 在这15天中,第9天销售额达到最大,最大销售额是3600元(3)当时,当 时,y有最小值,最小值为 不会有亏损当时,当 时,y有最小值,最小值为 不会有亏损当时, 解得 x为正整数 第13天、第14天、第15天这3天,专柜处于亏损状态【点睛】本题主要考查二次函数和一次函数的实际应用,掌握二次函数和一次函数的性质是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册期中定向攻克试题 卷(Ⅱ)(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-640627.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1