分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案解析).docx

  • 上传人:a****
  • 文档编号:695864
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:29
  • 大小:703.49KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二十二 二次 函数 单元测试 练习题 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果y=(m-2)x是关于x的二次函数,则m=()A-1B2C-1或2Dm不存在2、已知抛物线经过点,且该抛物

    2、线的对称轴经过点A,则该抛物线的解析式为()ABCD3、二次函数的图像如图所示,下列结论正确的是()ABCD有两个不相等的实数根4、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于轴对称, 轴,最低点 在轴上,高 ,则右轮廓所在抛物线的解析式为()ABCD5、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a + 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个6、若在同一直角坐标

    3、系中,作,的图像,则它们()A都关于y轴对称B开口方向相同C都经过原点D互相可以通过平移得到7、已知抛物线经过点,那么下列各点中,该抛物线必经过的点是()ABCD8、某超市销售一种商品,每件成本为元,销售人员经调查发现,该商品每月的销售量(件)与销售单价(元)之间满足函数关系式,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A元,元B元,元C元,元D元,元9、在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是()ABCD10、在平面直角坐标系中,对于点,若,则称点P为“同号点”,下列函数的图象上不存在“同号点”

    4、的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是_.2、在函数中,当x1时,y随x的增大而 _(填“增大”或“减小”)3、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为_元时,该种植户一天的销售收入最大4、二次函数的最小值为_5、如图,直线y=mx+n与抛物线y=ax

    5、2+bx+c交于A(1,p),B(4,q)两点,则关于x的不等式mx+nax2+bx+c的解集是_三、解答题(5小题,每小题10分,共计50分)1、如图,二次函数的图象交x轴于点,交y轴于点C点是x轴上的一动点,轴,交直线于点M,交抛物线于点N(1)求这个二次函数的表达式;(2)若点P仅在线段上运动,如图1求线段的最大值;若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由2、如图,在平面直角坐标系中,平行四边形的边与y轴交于E点,F是的中点,B、C、D的坐标分别为(1)求过B、E、C三点的抛物线的解

    6、析式;(2)试判断抛物线的顶点是否在直线上;(3)设过F与平行的直线交y轴于Q,M是线段之间的动点,射线与抛物线交于另一点P,当的面积最大时,求P的坐标3、在平面直角坐标系中,函数的图象记为,函数的图象记为,其中为常数,且,图象,合起来得到的图象记为(1)若图象有最低点,且最低点到轴距离为3,求的值;(2)若时,点在图象上,且,求的取值范围;(3)若点、的坐标分别为,连结当线段与图象恰有三个公共点时,请直接写出的取值范围4、某宾馆共有80间客房宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足yx42(x168)若宾馆每天的日常运营成本为4000元,有客

    7、人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?5、某工艺厂设计了一款成本为每件元的产品,并投放市场进行试销,经过调查,发现每天的销售数量件与销售单价(元)存在一次函数关系(1)要使每天销售利润达到元,销售单价应定为每件多少元?(2)销售单价定为多少时,该厂每天获取的利润最大?最大利润是多少?-参考答案-一、单选题1、A【解析】【分析】根据二次函数的定义知m2-m=2,且m-2,解出即可.【详解】依题意,解得m=-1,故选:A.

    8、【考点】此题主要考查二次函数的定义,需要注意二次项系数不为零.2、D【解析】【分析】根据抛物线图象性质可得A点是抛物线顶点坐标,再根据顶点坐标公式进行求解即可.【详解】抛物线经过点,且该抛物线的对称轴经过点A,函数的顶点坐标是,解得,经检验均符合该抛物线的解析式为.故选D.【考点】本题主要考查抛物线的性质和顶点坐标公式,解决本题的关键是要熟练掌握抛物线的性质和顶点坐标公式.3、C【解析】【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0;由对称轴为x=1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+

    9、c0,结合b=-2a可得 3a+c0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0,故A选项错误;对称轴x=1,b=-2a,即2a+b=0,故B选项错误;当x=-1时, y=a-b+c0,又b=-2a, 3a+c0,故C选项正确;抛物线的顶点为(1,3),的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【考点】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a

    10、0,开口向上,函数有最小值,a0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴的交点在x轴的上方;当=b2-4ac0,抛物线与x轴有两个交点4、B【解析】【分析】利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式【详解】高CH=1cm,BD=2cm,且B、D关于y轴对称,D点坐标为(1,1),AB

    11、x轴,AB=4cm,最低点C在x轴上,AB关于直线CH对称,左边抛物线的顶点C的坐标为(-3,0),右边抛物线的顶点F的坐标为(3,0),设右边抛物线的解析式为y=a(x-3)2,把D(1,1)代入得1=a(1-3)2,解得a=,右边抛物线的解析式为y=(x-3)2,故选:B【考点】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题5、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情

    12、况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项【详解】当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,bc0,一次函数y=ax+bc的图象一定经过第二象限,故错误;综上,正确的个数为1

    13、个,故选:D【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键6、A【解析】【分析】根据二次函数的图像和性质逐项分析即可【详解】A.因为,这三个二次函数的图像对称轴为,所以都关于轴对称,故选项A正确,符合题意;B.抛物线,的图象开口向上,抛物线的图象开口向下,故选项B错误,不符合题意;C.抛物线,的图象不经过原点,故选项C错误,不符合题意;D.因为抛物线,的二次项系数不相等,故不能通过平移其它二次函数的图象,故D选项错误,不符合题意;故选A【考点】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是

    14、解题的关键7、B【解析】【分析】将已知点的坐标代入确定抛物线的解析式,再计算出自变量为0时所对应的函数值即可求解【详解】解:抛物线经过点,物线的解析式为:,时,抛物线必经过的点是故选:B【考点】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,解题的关键是明确题意,利用二次函数的性质解答8、B【解析】【分析】设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可【详解】解:设每月总利润为,依题意得:,此图象开口向下,又,当时,有最大值,最大值为元故选:B【考点】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是

    15、解题的关键9、D【解析】【分析】根据二次函数与一次函数的图象可知,从而判断出二次函数的图象【详解】解:二次函数的图象开口向上,次函数的图象经过一、三、四象限,对于二次函数的图象,开口向上,排除A、B选项;,对称轴,D选项符合题意;故选:D【考点】本题考查了一次函数的图象以及二次函数的图象,根据二次函数的图象和一次函数图象经过的象限,找出,是解题的关键10、C【解析】【分析】由题意,图象经过第一和第三象限的函数都是满足条件的,由此判断即可【详解】解:由题意,图象经过第一和第三象限的函数都是满足条件的,函数的图象在二、四象限,不满足条件,故选:C【考点】本题考查了反比函数的性质,一次函数的性质,二

    16、次函数的性质可以用特值法进行快速的排除二、填空题1、【解析】【分析】由题意得:二次函数的图像开口向上,进而,可得到答案.【详解】二次函数的图像在它的对称轴右侧部分是上升的,二次函数的图像开口向上,.故答案是:【考点】本题主要考查二次函数图象和二次函数的系数之间的关系,掌握二次函数的系数的几何意义,是解题的关键.2、增大【解析】【分析】根据其顶点式函数可知,抛物线开口向上,对称轴为 ,在对称轴右侧y随x的增大而增大,可得到答案【详解】由题意可知: 函数,开口向上,在对称轴右侧y随x的增大而增大,又对称轴为,当时,y随的增大而增大,故答案为:增大【考点】本题主要考查了二次函数的对称轴及增减性,掌握

    17、当二次函数开口向上时,在对称轴的右侧y随x的增大而增大,在对称轴的左侧y随x的增大而减小是解题的关键3、25【解析】【分析】设草莓的零售价为x元/千克,销售收入为y元,由题意得y=30x2+1500x11880,再根据二次函数的性质解答即可【详解】解:设草莓的零售价为x元/千克,销售收入为y元,由题意得,y=x30030(x22)+1830(x22)=30x2+1500x11880,当时,y最大,当草莓的零售价为25元/千克时,种植户一天的销售收入最大故答案为:25【考点】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键4、【解析】【分析】先将函数解析式化为顶点式,再根据函数的性质

    18、解答【详解】解:,a=10,当x=-2时,二次函数有最小值-4,故答案为:-4【考点】此题考查将二次函数一般式化为顶点式,函数的性质,熟练转化函数解析式的形式及掌握确定最值的方法是解题的关键5、x4【解析】【分析】数形结合,将不等式mx+nax2+bx+c的解集转化为直线y=mx+n在抛物线y=ax2+bx+c的上方时对应的x的范围即可【详解】由图像可得,当x4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,不等式mx+nax2+bx+c的解集是:x4故答案为:x4【考点】本题主要考查二次函数、一次函数与不等式的关系,数形结合思想的运用是解题关键三、解答题1、(1);(2),存在,【解

    19、析】【分析】(1)把代入中求出b,c的值即可;(2)由点得,从而得,整理,化为顶点式即可得到结论;分MN=MC和两种情况,根据菱形的性质得到关于m的方程,求解即可【详解】解:(1)把代入中,得 解得(2)设直线的表达式为,把代入得,解这个方程组,得点是x轴上的一动点,且轴,此函数有最大值又点P在线段上运动,且当时,有最大值点是x轴上的一动点,且轴(i)当以M,N,C,Q为顶点的四边形为菱形,则有MN=MC,如图,C(0,-3)MC= 整理得, ,解得,当时,CQ=MN=,OQ=-3-()=Q(0,);当m=时,CQ=MN=-,OQ=-3-(-)=Q(0,);(ii)若,如图,则有整理得, ,解

    20、得,当m=-1时,MN=CQ=2,Q(0,-1),当m=-5时,MN=-100(不符合实际,舍去)综上所述,点Q的坐标为【考点】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m的方程,要分类讨论,以防遗漏2、(1);(2)顶点是在直线上,理由见解析;(3)P点坐标为(9,)【解析】【分析】(1)先求出A点坐标,再求出直线AB的解析式,进而求得E的坐标,然后用待定系数法解答即可;(2)先求出点F的坐标,再求出直线EF的解析式,然后根据抛物线的解析式确定顶点坐标,然后进行判定即可;(3

    21、)设P点坐标为(p,),求出直线BP的解析式,进而求得M的坐标;再求FQ的解析式,确定Q的坐标,可得|MQ|=+6,最后根据SPBQ= SMBQ+ SPMQ列出关于p的二次函数并根据二次函数的性质求最值即可【详解】解:(1)平行四边形,B、C、D的坐标分别为A(3,10),设直线AB的解析式为y=kx+b,则 ,解得,直线AB的解析式为y=2x+4,当x=0时,y=4,则E的坐标为(0,4),设抛物线的解析式为:y=ax2+bx+c, ,解得,过B、E、C三点的抛物线的解析式为;(2)顶点是在直线上,理由如下:F是的中点,F(8,10),设直线EF的解析式为y=mx+n,则,解得,直线EF的解

    22、析式为y=x+4,抛物线的顶点坐标为(3,),=3+4,抛物线的顶点是否在直线上;(3),则设P点坐标为(p,),直线BP的解析式为y=dx+e,则 ,解得,直线EF的解析式为y=,当x=0时,y=,则M点坐标为(0,),AB/FQ ,设FQ的解析式为y=2x+f,则10=28+f,解得f=-6,FQ的解析式为y=2x-6 ,Q的坐标为(0,-6),|MQ|=+6,SPBQ= SMBQ+ SPMQ= =当p=9时,的面积最大时,P点坐标为(9,)【考点】本题主要考查了运用待定系数法求函数解析式、二次函数求最值等知识点,灵活求得所需的函数解析式成为解答本题的关键3、(1);(2);(3)或【解析

    23、】【分析】(1)先将函数化为顶点式,根据图象有最低点,且最低点到轴距离为3,可得,即可求解;(2)根据题意可得 , ,然后分两种情况:当时和当时,进行讨论,即可求解;(3)根据题意可得直线PQ为 ,然后分两种情况:当 时和当 时,并结合图象,进行分类讨论,即可求解【详解】解:,图象有最低点,最低点到轴距离为3, ,最低点到轴距离为3, ,解得:;(2)当时, , ,当时,点A在函数图象 上,且当 时,函数随着x的增大而减小,当 时,当 时,此时 ;当时,点A在图象 上,函数,的对称轴为 ,当时, 最小为-5,当 时,当 时,此时 ,综上所述,的取值范围为;(3)点、的坐标分别为,直线PQ为 ,

    24、当 时,如图:函数的顶点为 ,若PQ经过图象M1的顶点 ,则 ,即 ,对于图象M2,有,解得: , (舍去), ,直线PQ与图象M2的交点在点P的右侧,线段与图象恰有三个公共点,由题意得:M1与y轴交于 ,解得: ;当 时,如图:函数的顶点为 ,若PQ经过图象M2的顶点 ,则 ,即 ,对于图象M1,时,解得: , (舍去), ,直线PQ与图象M1的交点在点Q的左侧,此时线段与图象只有一个公共点,不符合题意;若线段PQ过M2与y轴的交点时,有 ,解得: ,对于图象M1,解得: ,(舍去) ,此时线段PQ与图象M有三个交点,符合题意,综上所述,当线段与图象恰有三个公共点时, 的取值范围为或【考点】

    25、本题主要考查了二次函数与性质,一元一次不等式组,一元二次方程的解法,利用数形结合思想和分类讨论的思想是解题的关键4、(1)zx+122(x168);(2)应将房间定价确定为260元时,获得利润最大,最大利润为8767元【解析】【分析】(1)入住房间z(间)等于80减去每天的房间空闲数,列式并化简即可;(2)设利润为w元,由题意得w关于x的二次函数关系式,根据二次函数的对称性及问题实际可得答案【详解】解:(1)由题意得:z80(x42)x+122,入住房间z(间)与定价x(元/间)之间关系式为zx+122(x168);(2)设利润为w元,由题意得:w(x+122)x36(x+122)4000x2

    26、+131x8392,当x262时,w最大,此时z56.5非整数,不合题意,x260或264时,w最大,让客人得到实惠,x260,w最大2602+13126083928767,应将房间定价确定为260元时,获得利润最大,最大利润为8767元【考点】本题考查了二次函数在实际问题中的应用,理清题中的数量关系、熟练掌握二次函数的性质是解题的关键5、(1)要使每天销售利润达到元,销售单价应定为每件元或元;(2)销售单价定为每件元时,该厂每天获取的利润最大,最大利润是元【解析】【分析】(1)根据利润(售价-进价)销量,列方程即可解答(2)设每天的销售利润为元,根据题意可以列出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可解答【详解】(1)由题意得解得:或答:要使每天销售利润达到元,销售单价应定为每件元或元.(2)设每天的销售利润为元,由题意得当时,即销售单价为元时,取最大值答:销售单价定为每件元时,该厂每天获取的利润最大,最大利润是元【考点】本题考查了二次函数的应用,解题关键是明确题意,结合二次函数的性质解答

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十二章二次函数单元测试练习题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-695864.html
    相关资源 更多
  • 专题06 机械运动(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx专题06 机械运动(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx
  • 专题06 机械能和简单机械【考题猜想】(解析版) .docx专题06 机械能和简单机械【考题猜想】(解析版) .docx
  • 专题06 机械能和简单机械【考题猜想】(原卷版) .docx专题06 机械能和简单机械【考题猜想】(原卷版) .docx
  • 专题06 机械能和简单机械【考点清单】(解析版) .docx专题06 机械能和简单机械【考点清单】(解析版) .docx
  • 专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx
  • 专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx
  • 专题06 期末核心考点强化练200道(十七大类)八年级(牛津译林版)(原卷版).docx专题06 期末核心考点强化练200道(十七大类)八年级(牛津译林版)(原卷版).docx
  • 专题06 期末核心考点强化练200道(十七大类)-2023-2024学年八年级上学期期末考点大串讲(牛津译林版)(原卷版).docx专题06 期末核心考点强化练200道(十七大类)-2023-2024学年八年级上学期期末考点大串讲(牛津译林版)(原卷版).docx
  • 专题06 有理数的计算_答案.docx专题06 有理数的计算_答案.docx
  • 专题06 文言文阅读(原卷版).docx专题06 文言文阅读(原卷版).docx
  • 专题06 整式中与参数有关的两种考法(解析版)(北师大版) .docx专题06 整式中与参数有关的两种考法(解析版)(北师大版) .docx
  • 专题06 数据的分析(考点清单)解析版.docx专题06 数据的分析(考点清单)解析版.docx
  • 专题06 数据的分析(考点清单)原卷版.docx专题06 数据的分析(考点清单)原卷版.docx
  • 专题06 数列解答-天津市2021-2022学年高二上学期数学期末试题分类汇编.docx专题06 数列解答-天津市2021-2022学年高二上学期数学期末试题分类汇编.docx
  • 专题06 数列-2022届广东省高三上学期期末考试数学试题分类汇编.docx专题06 数列-2022届广东省高三上学期期末考试数学试题分类汇编.docx
  • 专题06 探究质量守恒定律—2022-2023学年九年级化学上册教材实验大盘点(人教版)(学生版).docx专题06 探究质量守恒定律—2022-2023学年九年级化学上册教材实验大盘点(人教版)(学生版).docx
  • 专题06 我国的社会主义市场经济体制 .docx专题06 我国的社会主义市场经济体制 .docx
  • 专题06 我们周围的空气(解析版).docx专题06 我们周围的空气(解析版).docx
  • 专题06 情景选择专项练习(一)-2022-2023学年三年级英语上册期末专项复习试题(译林版三起).docx专题06 情景选择专项练习(一)-2022-2023学年三年级英语上册期末专项复习试题(译林版三起).docx
  • 专题06 情态动词-备战2024年中考英语真题题源解密(全国通用)(原卷版).docx专题06 情态动词-备战2024年中考英语真题题源解密(全国通用)(原卷版).docx
  • 专题06 必修一综合检测-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020) .docx专题06 必修一综合检测-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020) .docx
  • 专题06 必修一Unit 5 -2023年高考英语一轮复习小题多维练(人教版2019).docx专题06 必修一Unit 5 -2023年高考英语一轮复习小题多维练(人教版2019).docx
  • 专题06 形容词副词单句语法填空100题-2022-2023学年高一英语牛津译林版(2020)必修第一册.docx专题06 形容词副词单句语法填空100题-2022-2023学年高一英语牛津译林版(2020)必修第一册.docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用)1.docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用)1.docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(全国卷专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(全国卷专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(浙江专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(浙江专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(全国卷专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(全国卷专用).docx
  • 专题06 应用文写作(6)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题06 应用文写作(6)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1