分享
分享赚钱 收藏 举报 版权申诉 / 26

类型2022年解析卷人教版九年级数学上册期中专项测评试题 A卷(含答案及详解).docx

  • 上传人:a****
  • 文档编号:711696
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:26
  • 大小:567.97KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年解析卷人教版九年级数学上册期中专项测评试题 A卷含答案及详解 2022 解析 卷人教版 九年级 数学 上册 期中 专项 测评 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、关于x的一元二次方程根的情况,下列说法正确的是()A有两个不相等的实

    2、数根B有两个相等的实数根C无实数根D无法确定2、关于x的方程有两个实数根,且,那么m的值为()ABC或1D或43、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD4、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,图2是点运动时随变化的关系图象,则的长为()ABCD5、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,

    3、下列结论中正确的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 A2a+b=0Babc0C方程ax2+bx+c=3有两个相等的实数根D抛物线与x轴的另一个交点是(1,0)E当1x4时,有y2y12、二次函数的部分图象如图所示,图象过点(3,0),对称轴为下列结论正确的是()ABCD若(5,),(2,)是抛物线上两点,则3、已知抛物线y=ax2+bx+c如图所示,则下列结论中不正确的是()Aa0Babc0Cb24ac0D2ab04、下列方程中,是一元二次方程的是()ABCD5、二次函数的图像如图所示,下列结论中正确的是()ABC抛物线与x轴的另一个交点为D第卷(非选择题 65分)三、填空

    4、题(5小题,每小题5分,共计25分)1、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点坐标为_;(2)点M(x1,y1)、N(x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)2、抛物线是二次函数,则m=_3、已知函数y(2k)x2+kx+1是二次函数,则k满足_4、将二次函数化成一般形式,其中二次项系数为_,一次项系数为_,常数项为_5、已知关于的一元二次方程,有下列结论:当时,方程有两个不相等的实根;当时,方程不可能有两个异号的实根;当时,方程的两个实根不可能都小于1; 线 封 密 内 号学级年名姓 线

    5、 封 密 外 当时,方程的两个实根一个大于3,另一个小于3以上4个结论中,正确的个数为_四、解答题(5小题,每小题8分,共计40分)1、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件假定每月的销售件数y是销售价格x(单位:元)的一次函数(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润2、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);3、某超市销售一种商品,每件成本为50元,销售人员经调

    6、查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?4、解下列方程(1)x22x0;(2)2x23x105、在平面直角坐标系中,抛物线交x轴于点,过点B的直线交抛物线于点C(1)求该抛物线的函数表达式;(

    7、2) 若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由-参考答案-一、单选题1、A【解析】【分析】先计算判别式,再进行配方得到=(k-1)2+4,然后根据非负数的性质得到0,再利用判别式的意义即可得到方程总有两个不相等的实数根【详解】=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,(k-1)2+40,即0,方程总有两个不相等的实数根 线 封 密 内 号学级年名姓 线 封

    8、密 外 故选:A【考点】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根上面的结论反过来也成立2、A【解析】【分析】通过根与系数之间的关系得到,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值【详解】解:方程有两个实数根,整理得,解得,若使有实数根,则,解得,所以,故选:A【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键3、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图

    9、象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从

    10、左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错 线 封 密 内 号学级年名姓 线 封 密 外 故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上4、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,

    11、最后利用中点定义得到BC的值【详解】解:由图2可知,当P点位于B点时,即,当P点位于E点时,即,则,,即,点为的中点,,故选:C【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法5、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x2)2;由“上加下减”的原则可知,抛物线y=2(x2)2向下平移1个单位所得抛物线是y=2(x2)21.故

    12、选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.二、多选题1、ACE【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系进行判断即可【详解】解:抛物线开口向下,抛物线的对称轴, 线 封 密 内 号学级年名姓 线 封 密 外 ,2a+b=0,故A正确;抛物线与y轴的交点在y轴的正半轴,abc0,故B错误;抛物线y1=ax2+bx+c与直线y=3只有一个交点,因此方程ax2+bx+c=3有两个相等的实数根,故C正确;根据抛物线的对称性可知,抛物线与x轴的另一个交点是(2,0),故D错误;根据图象,当1x4时,抛物线在直线的上方,因此有

    13、y2y1,故E正确;故选:ACE【点睛】本题考查了二次函数和一次函数的图象问题,认真观察图象找到有用信息是解题的关键2、ABD【解析】【分析】利用抛物线开口方向得到a0,利用对称轴方程得到b2a0,利用抛物线与y轴的交点位置得到c0,则可对A进行判断;利用b2a可对B进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(1,0),所以x2时,y0,则可对C进行判断;利用二次函数的性质对D进行判断【详解】解:A抛物线开口向上,a0,抛物线的对称轴为直线x1,b2a0,抛物线与y轴的交点坐标在x轴下方,c0,abc0,故选项正确,符合题意;Bb2a,2ab0,故选项正确,符合题意;C抛物

    14、线与x轴的一个交点坐标为(3,0),对称轴为x1,抛物线与x轴的另一个交点坐标为(1,0),当x2时,y0,4a+2b+c0,故选项错误,不符合题意;D点(5,y1)到直线x1的距离比点(2,y2)到直线x1的距离大,y1y2,故选项正确,符合题意故选:ABD【点睛】此题考查了二次函数的图像和性质,熟练掌握二次函数的图像和性质是基础,数形结合是解决问题的关键3、ABC【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 从抛物线的开口方向可以判断A选项,将代入解析式,结合函数图象可得即可判断B选项,根据抛物线与轴有两个交点可以判断C选项,根据对称轴为,即可判断D选项【详解】如图,抛物

    15、线的开口向上,故A选项不正确,符合题意;由函数图象可知,当时,函数值小于0,即,故B选项不正确,符合题意;由函数图象可知,抛物线与轴有两个不同的交点,即时,有两个不等实根,则;故C选项不正确,符合题意;对称轴为,故D选项正确,不符合题意;故选ABC【点睛】本题考查了二次函数的图象与性质,数形结合是解题的关键4、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可【详解】解:A、是一元二次方程,故本选项符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:【点睛】本题考查了一元二次

    16、方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.5、AD【解析】【分析】根据抛物线的对称轴为直线,则可对A进行判断;利用,函数值为负,可对B进行判断;通过求点关于直线的对称点,可对C进行判断;由抛物线开口向上得到,则,再由抛物线与轴的交点在轴下方得到,即可对D进行判断【详解】解:A、抛物线的对称轴为直线,即,选项说法正确,符合题意;B、由抛物线的对称性可,知时,即,选项说法错误,不符合题 线 封 密 内 号学级年名姓 线 封 密 外 意;C、点关于直线的对称点,抛物线与x轴的另一个交点为,选项说法错误,不符合题意;D、抛

    17、物线开口向上,又抛物线与轴的交点在轴下方,选项说法正确,符合题意;故选AD【点睛】本题考查了二次函数的图像与性质,解题的关键是熟练运用二次函数的图像与系数的关系三、填空题1、 (1,-2) 【解析】【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2x23时,y1y2,再将x=2、x=3代入函数关系式进行求解即可 【详解】(1),抛物线顶点坐标为(1,-2),故答案为 (1,-2)(2)抛物线的对称轴为直线x=1,当点M,N关于抛物线的对称轴对称时,x1+x

    18、2=2,结合x2-x1=2,可得x1=0,x2 =2,当2x23时,y1y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,【考点】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系2、3【解析】【分析】根据二次函数的定义:一般地,形如(a、b、c是常数且a0)的函数叫做二次函数,进行求解即可【详解】解:抛物线是二次函数,故答案为:3【考点】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义3、k2【解析】【分析】利用二次函数定义可得2k0,再解不等式即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:由题

    19、意得:2k0,解得:k2,故答案为:k2【考点】本题主要考查了二次函数的定义,准确分析计算是解题的关键4、 【解析】【分析】通过去括号,移项,可以把方程化成二次函数的一般形式,然后确定二次项系数,一次项系数,常数项【详解】y=2(x2)2变形为:y=2x2+8x8,所以二次项系数为2;一次项系数为8;常数项为8故答案为2,8,8【考点】本题考查的是二次函数的一般形式,通过去括号,移项,合并同类项,得到二次函数的一般形式,确定二次项系数,一次项系数,常数项的值5、【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案【详解】解:根据题意,一元二次方程,;当,即时,方程有两个不相等的实

    20、根;故正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故正确;由,则,解得:或;故正确;正确的结论有;故答案为:【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题四、解答题1、 (1)(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【解析】【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;(2)根据总利润=每件利润每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案(1)解:设,把,和,代入可得 线

    21、 封 密 内 号学级年名姓 线 封 密 外 ,解得,则;(2)解:每月获得利润 ,当时,P有最大值,最大值为3630答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值2、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)2

    22、3,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解3、(1);(2)70元;(3)

    23、80元【解析】【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量(售价成本)”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可【详解】解:(1)依题意得, 线 封 密 内 号学级年名姓 线 封 密 外 与的函数关系式为;(2)依题意得,即,解得:,当该商品每月销售利润为,为使顾客获得更多实惠,销售单价应定为元;(3)设每月总利润为,依题意得,此图象开口向下当时, 有最大值为:(元),当销售单价为元时利润最大,最大利润为元,故为了每月所获利润最大,该商品销售单价应定为元【点睛】

    24、本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键4、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2),【点睛】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键5、(1);(2);(3)存在,或 或或【解析】【分析】(1)将A、B两点的坐标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于

    25、点F,连接PB,PC,则有,设,则可得E点坐标,从而可分别求得PE、DE,从而求得PE,解由二次函数与一次函数组成的方程组,可求得点C的坐标, 线 封 密 内 号学级年名姓 线 封 密 外 进而求得PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标【详解】(1)将点,代入中,得:解得该抛物线表达式为 (2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,如图 设点,则点点P、E均位于直线的下方P、E两点的纵坐标均为负,点C的坐标为方

    26、程组的一个解解这个方程组,得,点B坐标为点C的横坐标为(其中)这个二次函数有最大值,且当时,的最大值为(3)存在设M(p,q),其中,且p0, 则直线OM的解析式为:由于ONOM,则直线ON的解析式为: 线 封 密 内 号学级年名姓 线 封 密 外 解方程组 ,得, 即点N的坐标为 ,且OM=ON 即 或把代入两式中并整理,得: 或 解方程得: , (舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p=0时,则q=3,即M(0,3),而,且OMOB即此时点M也满足题意 综上所述,满足题意的点M的坐标为或或或【点睛】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知识,运算量较大,这对学生的运算能力提出了更高的要求;求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版九年级数学上册期中专项测评试题 A卷(含答案及详解).docx
    链接地址:https://www.ketangku.com/wenku/file-711696.html
    相关资源 更多
  • 专题4.1 图形的相似(能力提升)(解析版).docx专题4.1 图形的相似(能力提升)(解析版).docx
  • 专题4.1 图形的相似(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题4.1 图形的相似(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题4.1 函数(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(北师大版).docx专题4.1 函数(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(北师大版).docx
  • 专题4.1 几何图形(知识讲解)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题4.1 几何图形(知识讲解)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题4.1 任意角和弧度制及任意角的三角函数(解析版).docx专题4.1 任意角和弧度制及任意角的三角函数(解析版).docx
  • 专题4-观察物体-2023年四年级数学下册暑假专项培优(北师大版).docx专题4-观察物体-2023年四年级数学下册暑假专项培优(北师大版).docx
  • 专题4-2数列的通项与求和 (专题分层练)(5种题型)解析版.docx专题4-2数列的通项与求和 (专题分层练)(5种题型)解析版.docx
  • 专题4-2数列的通项与求和 (专题分层练)(5种题型)原卷版.docx专题4-2数列的通项与求和 (专题分层练)(5种题型)原卷版.docx
  • 专题4 能量-教科版科学六年级上册.docx专题4 能量-教科版科学六年级上册.docx
  • 专题4 第17课时 动量观点在电磁感应中的应用.docx专题4 第17课时 动量观点在电磁感应中的应用.docx
  • 专题4 第16课时 电磁感应.docx专题4 第16课时 电磁感应.docx
  • 专题4 第15课时 直流电路与交流电路.docx专题4 第15课时 直流电路与交流电路.docx
  • 专题4 用导数研究函数的最值(解析版).docx专题4 用导数研究函数的最值(解析版).docx
  • 专题4 用导数研究函数的最值(原卷版).docx专题4 用导数研究函数的最值(原卷版).docx
  • 专题4 热学(解析版).docx专题4 热学(解析版).docx
  • 专题4 热学(原卷版).docx专题4 热学(原卷版).docx
  • 专题4 气体的制取实验(解析版).docx专题4 气体的制取实验(解析版).docx
  • 专题4 气体的制取实验(原卷版).docx专题4 气体的制取实验(原卷版).docx
  • 专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx
  • 专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题4 因式分解 2023年中考数学一轮复习专题训练(北京专用).docx专题4 因式分解 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题4 单词大闯关-首字母填空(205道题)-2021-2022学年七年级英语下学期期末备考冲刺满分专题(人教版).docx专题4 单词大闯关-首字母填空(205道题)-2021-2022学年七年级英语下学期期末备考冲刺满分专题(人教版).docx
  • 专题4 分子空间结构与物质性质-【知识清单】2022-2023学年高二化学期末单元复习知识清单(苏教版2019选择性必修2).docx专题4 分子空间结构与物质性质-【知识清单】2022-2023学年高二化学期末单元复习知识清单(苏教版2019选择性必修2).docx
  • 专题4 光现象 4.5光的色散(教师版).docx专题4 光现象 4.5光的色散(教师版).docx
  • 专题4 光现象 4.4光的折射(学生版).docx专题4 光现象 4.4光的折射(学生版).docx
  • 专题4 光现象 4.3平面镜成像(教师版).docx专题4 光现象 4.3平面镜成像(教师版).docx
  • 专题4 光现象 4.3平面镜成像(学生版).docx专题4 光现象 4.3平面镜成像(学生版).docx
  • 专题4 光现象 4.1 光的直线传播(教师版).docx专题4 光现象 4.1 光的直线传播(教师版).docx
  • 专题4 光现象 4.1 光的直线传播(学生版).docx专题4 光现象 4.1 光的直线传播(学生版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1