分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022年解析卷人教版九年级数学上册期中考试试题(含答案详解).docx

  • 上传人:a****
  • 文档编号:712025
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:24
  • 大小:572.33KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 解析 卷人教版 九年级 数学 上册 期中考试 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中考试试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2+bx+c

    2、Cy=8xDy=x2(1+x)2、若m、n是一元二次方程x23x90的两个根,则的值是()A4B5C6D123、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD4、设方程的两根分别是,则的值为()A3BCD5、2019年女排世界杯于9

    3、月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为() A BCD二、多选题(5小题,每小题4分,共计20分)1、下列各数不是方程解的是()A6B2C4D02、已知二次函数yax2bxc(a0)

    4、的图象如图所示,下列结论正确的有( ) 线 封 密 内 号学级年名姓 线 封 密 外 A2ab0Babc0C4a2bc0Dac03、已知关于的方程,下列说法不正确的是()A当时,方程无解B当时,方程有两个相等的实数根C当时,方程有两个相等的实数根D当时,方程有两个不相等的实数根4、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是()A23B32CD5、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点则以下结论正确的有()AB当时,y随x的增大而增大C无论a取任何不为0的数,该函数的图象必经过定点D若

    5、线段AB上有且只有5个横坐标为整数的点,则a的取值范围是第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若关于x的一元二次方程的根的判别式的值为4,则m的值为_2、已知一元二次方程ax2+bx+c=0(a0),下列结论:若方程两根为-1和2,则2a+c=0;若ba+c,则方程有两个不相等的实数根;若b=2a+3c,则方程有两个不相等的实数根;若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立其中结论正确的序号是_3、如图,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),与y轴交于点C下列结论:abc0;3ac0;当x0时,y随x的增大而增大

    6、;对于任意实数m,总有abam2bm其中正确的是 _(填写序号)4、已知方程的一根为,则方程的另一根为_5、如图,平行四边形ABCD中,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为_四、解答题(5小题,每小题8分,共计40分)1、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少? 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,一次函数图象与坐标轴交于点A、B,二次函数

    7、图象过A、B两点(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由3、如图,在矩形ABCD中,AB12 cm,BC6 cm点P沿AB边从点A开始向点B以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动如果点P,Q同时出发,用t(s)表示移动的时间(0t6),那么当t为何值时,QAP的面积等于8 cm2?4、某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少商家决定当售价为60元/件时,改

    8、变销售策略,此时售价每增加1元需支付由此产生的额外费用150元该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?5、在美化校园的活动中,某兴趣小组用总长为米的围栏材料,一面靠墙,围成一个矩形花园,墙长米,设的长为米,矩形花园的面积为平方米,当为多少时,取得最大值,最大值是多少?-参考答案-一、单选题1、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意

    9、, 线 封 密 内 号学级年名姓 线 封 密 外 C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A【考点】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数2、C【解析】【分析】由于m、n是一元二次方程x23x90的两个根,根据根与系数的关系可得mn=3,mn=9,而m是方程的一个根,可得m23m9=0,即m23m=9,那么m24mn=m23mmn,再把m23m、mn的值整体代入计算即可【详解】解:m、n是一元二次方程x23x90的两个根,mn3,mn9,m是x23x90的一个根,m23m90,m23m9,m24mn

    10、m23mmn9(mn)936故选:C【考点】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax2bxc0(a0)两根x1、x2之间的关系:x1x2=,x1x2=3、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,设抛物线解析式为y=ax2,点B(45,-78),-78=452a,解得:a=,此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了二次函数的应用,熟练掌握待

    11、定系数法是解本题的关键.4、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数, 线 封 密 内 号学级年名姓 线 封 密 外 由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率5、A【解析】【分析】由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则

    12、函数解析式可得,从而问题得解【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,排球经过A、B、C三点,解得: ,排球运动路线的函数解析式为,故选:A【考点】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次函数的一般式是解题的关键二、多选题1、ACD【解析】【分析】分别把四个选项中的数代入方程,看方程两边是否相等即可求解【详解】解:A、将6代入得:,故6不是方程解,符合题意;B、将2代入得:,故2是方程解,不符合题意;C、将4代入得:,故4不是方程解,符合题意;D、将0代入

    13、得:,故0不是方程解,符合题意;故选:ACD【点睛】此题考查了一元二次方程解得含义,解题的关键是熟练掌握一元二次方程解得含义2、AD【解析】【分析】结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:,故A选项正确;abc0,故B选项错误;根据图象可知,当x=-2时,故C选项错误;根据图象可知,当x=-1时,故D选项正确故选:AD【点睛】本题考查了二次函数图象判定式子的正负二次函数yax2bxc系数符号由抛物线开口方向

    14、、对称轴、抛物线与y轴的交点确定,注意特殊点的函数值3、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可【详解】关于的方程,A当k= 0时,x- 1=0,则x=1,故此选项错误,符合题意;B当k = 1时,- 1 = 0,x=1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,则,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k= 0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD【点睛】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键4、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的

    15、数字为,根据所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,当时,符合题意,原来的两位数是23,当时,符合题意,原来的两位数是32,原来的两位数是23或32,故选AB【点睛】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数5、ACD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】求得顶点坐标,根据题意即可判断正确;根据二次函数的性质即可判断错误;二次函数是不为0的常数)的顶点,即可判断错误;根据题意时,时,即可判断正确【详解】解:二次函数,顶点为,在

    16、轴的下方,函数的图象与轴交于、两点,抛物线开口向上,故正确;时,随的增大而增大,故错误;由题意可知当,二次函数是不为0的常数)的图象一定经过点,故正确;线段上有且只有5个横坐标为整数的点,且对称轴为直线,当时,当时,解得,故正确;故选:ACD【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,二次函数图象上点的坐标特征,能够理解题意,利用二次函数的性质解答是解题的关键三、填空题1、【解析】【分析】利用根的判别式,建立关于m的方程求得m的值【详解】关于x的一元二次方程的根的判别式的值为4,解得故答案为:【考点】本题考查了一元二次方程(a0)的根的判别式2、故答案为:或【考点】本题考查新定

    17、义运算、解一元二次方程,根据题意理解新定义运算是解题的关键2【解析】【分析】利用根与系数的关系判断;由=b2-4ac判断;由判别式可判断;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:若方程两根为-1和2,则=-12=-2,即c=-2a,2a+c=2a-2a=0,故正确;由ba+c不能判断=b2-4ac值的大小情况,故错误;若b=2a+3c,则=b2-4ac=4(a+c)2+5c20,一元二次方程ax2+bx+c=0有两个不相等的实数根,故正确若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c

    18、=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a-(bm+c)+4abm+b2=4abm-4abm-4ac+b2=b2-4ac故正确;故答案为:【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系及根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根3、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判断【详解】解:

    19、抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),对称轴为,则,当,故不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故正确故答案为:【考点】本题考查了二次函数图象的性质,数形结合是解题的关键4、【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 设方程的另一个根为c,再根据根与系数的关系即可得出结论【详解】解:设方程的另一个根为c,故答案为【考点】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键5、【解析】【

    20、分析】根据平行四边形的性质得到CD=AB=4,即C点坐标为,进而得到A点坐标为,B点坐标为,利用待定系数法即可求得函数解析式【详解】四边形ABCD为平行四边形CD=AB=4C点坐标为A点坐标为,B点坐标为设函数解析式为,代入C点坐标有解得函数解析式为,即故答案为【考点】本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标四、解答题1、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可【详解】解(1)当x=0时,=2250,=2000-=2250-2

    21、000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值, 线 封 密 内 号学级年名姓 线 封 密 外 也就是说,当小丽出发第时,两人相距最近,最近距离是【点睛】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键2、(1)抛物线的解析式为:;(2)Q点坐标为(1,)或(3,0)或(-1,0)【解析】【分析】(1)由直线与坐标轴的交点坐标A,B,代入抛物线解析式,求出b,c坐标即可;(2)分BC为对角线和边两种情况讨论,其中当BC为边时注意点Q的位置有两种:在点P右侧和左侧,根据菱形的性质求解即可【详解】解:(1)对于:当x=0时

    22、,;当y=0时,妥得,x=3A(3,0),B(0,)把A(3,0),B(0,)代入得: 解得, 抛物线的解析式为:;(2)抛物线的对称轴为直线 故设P(1,p),Q(m,n)当BC为菱形对角线时,如图,B,C关于对称没对称,且对称轴与x轴垂直,BC与对称轴垂直,且BC/x轴在菱形BQCP中,BCPQPQx轴点P在x=1上,点Q也在x=1上,当x=1时,Q(1,);当BC为菱形一边时,若点Q在点P右侧时,如图, 线 封 密 内 号学级年名姓 线 封 密 外 BC/PQ,且BC=PQBC/x轴,令,则有解得, PQ=BC=2 PB=BC=2迠P在x轴上,P(1,0)Q(3,0);若点Q在点P的左侧

    23、,如图, 同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)【点睛】本题考查的知识点有用待定系数法求出二次函数的解析式,菱形的性质和判定,解一元二次方程,主要考查学生综合运用这些性质进行计算和推理的能力3、当t为2或4时,QAP的面积等于8 cm2【解析】【分析】当运动时间为t s时,AP2t cm,AQ(6t)cm,利用三角形的面积计算公式,结合QAP的面积等于8cm2,即可得出关于t的一元二次方程,解之即可得出t的值【详解】解:当运动时间为t s时,AP2t cm,AQ(6t)cm,依题意得2t(6t)8,整理得t26t80,解得t12,t24, 线 封 密 内

    24、 号学级年名姓 线 封 密 外 当t为2或4时,QAP的面积等于8 cm2【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键4、(1);(2)当售价为70元时,商家所获利润最大,最大利润是4500元【解析】【分析】(1)利用待定系数法分段求解函数解析式即可;(2)分别求出当时与当时的销售利润解析式,利用二次函数的性质即可求解【详解】解:(1)当时,设,将和代入,可得,解得,即;当时,设,将和代入,可得,解得,即;(2)当时,销售利润,当时,销售利润有最大值,为4000元;当时,销售利润,该二次函数开口向上,对称轴为,当时位于对称轴右侧,当时,销售利润有最大值,为4500元;,当售价为70元时,商家所获利润最大,最大利润是4500元【点睛】本题考查一次函数的应用、二次函数的性质,根据图象列出解析式是解题的关键5、80【解析】【分析】由题意可得出:,再利用二次函数增减性求得最值【详解】.,当时,有最大值,最大值【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版九年级数学上册期中考试试题(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-712025.html
    相关资源 更多
  • 高中语文 情感美文 我们家的男子汉.doc高中语文 情感美文 我们家的男子汉.doc
  • 高中语文 情感美文 我从乡下来.doc高中语文 情感美文 我从乡下来.doc
  • 高中语文 情感美文 我不认识他.doc高中语文 情感美文 我不认识他.doc
  • 【教案大全】幼儿园清明节活动教案方案(三篇合辑).docx【教案大全】幼儿园清明节活动教案方案(三篇合辑).docx
  • 【教案大全】幼儿园清明节活动教案方案范本(三篇).docx【教案大全】幼儿园清明节活动教案方案范本(三篇).docx
  • 【教案大全】幼儿园清明节活动教案方案精选大全.docx【教案大全】幼儿园清明节活动教案方案精选大全.docx
  • 【教案大全】幼儿园清明节活动教案方案参考模板(通用).docx【教案大全】幼儿园清明节活动教案方案参考模板(通用).docx
  • 【教案大全】幼儿园清明节活动教案方案参考模板(大全).docx【教案大全】幼儿园清明节活动教案方案参考模板(大全).docx
  • 【教案大全】幼儿园清明节活动教案方案参考大全.docx【教案大全】幼儿园清明节活动教案方案参考大全.docx
  • 【教案大全】幼儿园清明节活动教案方案参考三篇合集.docx【教案大全】幼儿园清明节活动教案方案参考三篇合集.docx
  • 【教案大全】幼儿园数学活动教案(精选).docx【教案大全】幼儿园数学活动教案(精选).docx
  • 【教案大全】幼儿园数学活动教案(精选大全).docx【教案大全】幼儿园数学活动教案(精选大全).docx
  • 【教案大全】幼儿园数学活动教案(大全).docx【教案大全】幼儿园数学活动教案(大全).docx
  • 【教案大全】幼儿园数学活动教案模板(三篇合集).docx【教案大全】幼儿园数学活动教案模板(三篇合集).docx
  • 【教案大全】幼儿园数学活动教案大全.docx【教案大全】幼儿园数学活动教案大全.docx
  • 【教案大全】幼儿园数学活动教案参考模板(精选大全).docx【教案大全】幼儿园数学活动教案参考模板(精选大全).docx
  • 【教案大全】幼儿园数学活动教案参考模板三篇合集.docx【教案大全】幼儿园数学活动教案参考模板三篇合集.docx
  • 【教案大全】幼儿园数学活动教案参考模板三篇合辑.docx【教案大全】幼儿园数学活动教案参考模板三篇合辑.docx
  • 【教案大全】幼儿园数学活动教案三篇精选.docx【教案大全】幼儿园数学活动教案三篇精选.docx
  • 【教案大全】幼儿园数学活动教案.docx【教案大全】幼儿园数学活动教案.docx
  • 【教案大全】幼儿园小班音乐主题教案(三篇大全).docx【教案大全】幼儿园小班音乐主题教案(三篇大全).docx
  • 【教案大全】幼儿园小班音乐主题教案(三篇合辑).docx【教案大全】幼儿园小班音乐主题教案(三篇合辑).docx
  • 【教案大全】幼儿园小班音乐主题教案参考模板(三篇大全).docx【教案大全】幼儿园小班音乐主题教案参考模板(三篇大全).docx
  • 【教案大全】幼儿园小班音乐主题教案参考模板精选三篇.docx【教案大全】幼儿园小班音乐主题教案参考模板精选三篇.docx
  • 【教案大全】幼儿园小班音乐主题教案参考模板三篇.docx【教案大全】幼儿园小班音乐主题教案参考模板三篇.docx
  • 【教案大全】幼儿园小班音乐主题教案三篇精选.docx【教案大全】幼儿园小班音乐主题教案三篇精选.docx
  • 【教案大全】幼儿园小班音乐主题教案三篇大全.docx【教案大全】幼儿园小班音乐主题教案三篇大全.docx
  • 【教案大全】幼儿园小班音乐主题教案三篇合集.docx【教案大全】幼儿园小班音乐主题教案三篇合集.docx
  • 【教案大全】幼儿园小班防火安全教育教案范本(三篇).docx【教案大全】幼儿园小班防火安全教育教案范本(三篇).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1