分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022年解析卷人教版九年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx

  • 上传人:a****
  • 文档编号:712127
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:27
  • 大小:661.35KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年解析卷人教版九年级数学上册期末专题测评试题 卷含答案详解 2022 解析 卷人教版 九年级 数学 上册 期末 专题 测评 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专题测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC

    2、1D52、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A30B90C120D1803、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+20004、如果,那么的结果是()ABCD5、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,

    3、制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)3000二、多选题(5小题,每小题4分,共计20分)1、已知,为半径是3的圆周上两点,为的中点,以线段,为邻边作菱形,顶点恰在该圆直径的三等分点上,则该菱形的边长为()ABCD2、已知,的半径为5,某条经过点的弦的长度为整数,则该弦的长度可能为()A4B6C8D103、下列说法中,不正确的是()A平分一条直径的弦必垂直于这条直径B平分一条弧的直线垂直于这条弧

    4、所对的弦C弦的垂线必经过这条弦所在圆的圆心 线 封 密 内 号学级年名姓 线 封 密 外 D在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心4、如图是二次函数图象的一部分,过点,对称轴为直线则错误的有()ABCD5、下列关于x的方程没有实数根的是()Ax2-x10Bx2x10C(x-1)(x2)0D(x-1)210第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知一元二次方程ax2+bx+c=0(a0),下列结论:若方程两根为-1和2,则2a+c=0;若ba+c,则方程有两个不相等的实数根;若b=2a+3c,则方程有两个不相等的实数根;若m是方程的一个根,

    5、则一定有b2-4ac=(2am+b)2成立其中结论正确的序号是_2、如图,在平面直角坐标系中,坐标原点为O,抛物线ya(x2)21(a0)的顶点为A,过点A作y轴的平行线交抛物线于点B,连接AO、BO,则AOB的面积为_3、如图,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),与y轴交于点C下列结论:abc0;3ac0;当x0时,y随x的增大而增大;对于任意实数m,总有abam2bm其中正确的是 _(填写序号)4、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为_5、如图,是等边三角形,点D为BC边上一点,以点D为顶点作正方形DEFG

    6、,且,连接AE,AG若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、(1)计算:(2)解方程:2(x3)2502、用适当的方法解方程:(1)(2)3、如图,CD是O的直径,EOD=84,AE交O于点B,且AB=OB,求A的度数4、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线

    7、上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由5、如图,AB是O的直径,弦CDAB于点E,点PO上,1=C(1)求证:CBPD;(2)若ABC=55,求P的度数-参考答案-一、单选题1、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称, 线 封 密 内 号学级年名姓 线 封 密 外 2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律2、C【解析】【分析】根据图形的对称性,用

    8、360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故选C【考点】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数倍是解题的关键3、D【解析】【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键4、B【

    9、解析】【分析】根据比例的性质即可得到结论【详解】,可设a2k,b3k,故选B【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案5、B 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等

    10、关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程二、多选题1、BD【解析】【分析】过B作直径,连接AC交AO与E,再根据两种情况求出BD的两个长度,再求得OD,OE,DE的值连接OD,根据勾股定理得到结论【详解】点B为的中点BDAC如图点D恰再该圆直径的三等分点上BD=2OD=OB-BD=1四边形ABCD是菱形DE=1OE=2连接OCCE= 边CD=如下图 线 封 密 内 号学级年名姓 线 封 密 外 BD=4同理可得,OD=1,OE=1,DE=2,连接OC,CE=CD=故选:BD【考点】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确地作出图形是解题的

    11、关键2、CD【解析】【分析】过P作弦ABOP,连接OA,根据垂径定理求出AP=BP,根据勾股定理求出AP,再求出AB,再得出答案即可【详解】解:过P作弦ABOP,连接OA,如图,OA=5,OP=3,OPAB,OP过圆心O,AP=BP=4,即AB=4+4=8,过P点长度为整数的弦有4条,过P点最短的弦的长度是8,过P点最长的弦的长度是10,还有两条弦,长度是9,故答案为:CD【考点】本题考查了勾股定理和垂径定理,能熟记垂径定理是解此题的关键3、ABC【解析】【分析】根据垂径定理的推论,即如果一条直线满足:垂直于弦,平分弦,过圆心,平分优弧,平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即

    12、可【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选 线 封 密 内 号学级年名姓 线 封 密 外 项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意;故选ABC【考点】本题考查了垂径定理,解题的关键是掌握垂径定理及其推论4、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与

    13、y轴的交点判断c的符号,然后根据对称轴x=1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断【详解】解:A、由抛物线的开口向下知a0,对称轴为直线,得2a=b,a、b同号,即b0;故本选项正确,不符合题意;B、对称轴为,得2a=b,2a+b=4a,且a0,2a+b0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、3x12,根据二次函数图象的对称性,知当x=1时,y0;又由A知,2a=b,a+b+c0;b+b+c0,即3b+2c0;故本选项错误,符合题意故选:BD【考点】本题主要考查了二次函

    14、数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键5、ABD【解析】【分析】将选项中的式子转换为一元二次方程一般式,根据根的判别式可得结果【详解】解:A、x2-x10,方程没有实数根,此选项符合题意;B、x2x10,方程没有实数根,此选项符合题意;C、(x-1)(x2)0,方程有实数根,此选项不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 D、原式整理为:,方程没有实数根,此选项符合题意;故选:ABD【考点】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当

    15、时,方程无实数根三、填空题1、【解析】【分析】利用根与系数的关系判断;由=b2-4ac判断;由判别式可判断;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断【详解】解:若方程两根为-1和2,则=-12=-2,即c=-2a,2a+c=2a-2a=0,故正确;由ba+c不能判断=b2-4ac值的大小情况,故错误;若b=2a+3c,则=b2-4ac=4(a+c)2+5c20,一元二次方程ax2+bx+c=0有两个不相等的实数根,故正确若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2

    16、=4a-(bm+c)+4abm+b2=4abm-4abm-4ac+b2=b2-4ac故正确;故答案为:【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系及根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根2、【解析】【分析】先求得顶点A的坐标,然后根据题意得出B的横坐标,把横坐标代入抛物线,得出B点坐标,从而求得A、B间的距离,最后计算面积即可【详解】设AB交x轴于C抛物线线ya(x2)21(a0)的顶点为A,A(2,1),过点A作y轴的平行线交抛物线于点B,B的横坐标为2,OC=2 线 封 密 内 号学级年名

    17、姓 线 封 密 外 把x=2代入得y=-3,B(2,-3),AB=1+3=4,故答案为:4【考点】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标是解题的关键3、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判断【详解】解:抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),对称轴为,则,当,故不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故

    18、不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故正确故答案为:【考点】本题考查了二次函数图象的性质,数形结合是解题的关键4、【解析】【分析】如图:连接OP、OQ,根据,可得当OPAB时,PQ最短;在中运用含30的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可【详解】解:如图:连接OP、OQ,是的一条切线PQOQ 线 封 密 内 号学级年名姓 线 封 密 外 当OPAB时,如图OP,PQ最短在RtABC中,AB=2OB=,AO=cosAAB= SAOB= ,即OP=3在RtOPQ中,OP=3,OQ=1PQ=故答案为【考点】

    19、本题考查了切线的性质、含30直角三角形的性质、勾股定理等知识点,此正确作出辅助线、根据勾股定理确定当POAB时、线段PQ最短是解答本题的关键5、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出【详解】过点A作于M,是等边三角形,在中,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,在中,;故答案为8 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了旋转的性质、正方形的

    20、性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键四、解答题1、(1);(2)x8或2【解析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案【详解】(1)原式23(1)1+1;(2)2(x3)250(x3)225,则x35,解得:x8或2【考点】此题考查实数的运算,解一元二次方程-配方法,解题关键在于掌握运算法则.2、 (1),;(2),【解析】【分析】将左边利用十字相乘法因式分解,继而可得两个关于的一元一次方程,分别求解即可得出答案;先移项,再将左边利用提公因式法因式分解,继而可得两个关于的

    21、一元一次方程,分别求解即可得出答案(1)解:,则或,解得,所以,原方程的解为,;(2)解: ,则,或, 线 封 密 内 号学级年名姓 线 封 密 外 解得,所以,原方程的解为,【考点】本题考查了一元二次方程的解法,熟练掌握和运用一元二次方程的解法是解决本题的关键3、28【解析】【分析】根据等腰三角形的性质,可得A与AOB的关系,BEO与EBO的关系,根据三角形外角的性质,可得关于A的方程,根据解方程,可得答案【详解】AB=BO,BOC=A,EBO=BOC+A=2A,而OB=OE,得E=EBO=2A,EOD=E+A=3A,而EOD=84,3A=84,A=28【考点】本题考查了三角形的性质与圆的相

    22、关知识点,解题的关键是熟练的掌握三角形的性质与圆的认识.4、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、为顶点的四边形是平行四边形,,点坐标为,【解析】【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1) 抛物线过点,解得:抛物线解析式为(2) 点,抛物线对称轴为直线点在直线上,点,关于直线对称 线 封 密 内 号学级年名姓 线 封

    23、 密 外 ,当点、在同一直线上时,最小抛物线解析式为,C(0,-6),设直线解析式为,解得:直线:,故答案为:(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为(4)存在点,使以点、为顶点的四边形是平行四边形设N(x,y),M(,m),四边形CMNB是平行四边形时,CMNB,CBMN,x= ,y= = ,N(,);四边形CNBM是平行四边形时,CNBM,CMBN,x=,y=N(,);四边形CNMB是平行四边形时,CBMN,NCBM,x=,y= 线 封 密 内 号学级年名姓 线 封 密 外 N(,);点坐标为(,),(,),(,)【考点】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键5、(1)证明见解析;(2)35【解析】【详解】试题分析:(1)要证明CBPD,只要证明1=P;由1=C,P=C,可得1=P,即可解决问题;(2)在RtCEB中,求出C即可解决问题.试题解析:(1)如图,1=C,P=C,1=P,CBPD;(2)CDAB,CEB=90,CBE=55,C=9055=35,P=C=35.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版九年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-712127.html
    相关资源 更多
  • 人教版化学选修三重点强化教案.docx人教版化学选修三重点强化教案.docx
  • 人教版化学第六单元碳和碳的氧化物专项练习题(有答案).docx人教版化学第六单元碳和碳的氧化物专项练习题(有答案).docx
  • 人教版化学第三单元课题一分子运动实验专题练习(无答案).docx人教版化学第三单元课题一分子运动实验专题练习(无答案).docx
  • 人教版化学第一单元课题3第1课时 化学药品的取用 学案与练习.docx人教版化学第一单元课题3第1课时 化学药品的取用 学案与练习.docx
  • 人教版化学必修一第二章第一节物质的分类导学案.docx人教版化学必修一第二章第一节物质的分类导学案.docx
  • 人教版化学必修一第二章第一节物质的分类导学案.docx人教版化学必修一第二章第一节物质的分类导学案.docx
  • 人教版化学必修一第一章第一节第一节 化学实验基本方法化学实验安全 过滤和蒸发基础知识强化练习无答案.docx人教版化学必修一第一章第一节第一节 化学实验基本方法化学实验安全 过滤和蒸发基础知识强化练习无答案.docx
  • 人教版化学必修一第一章从实验学化学第二课时学案.docx人教版化学必修一第一章从实验学化学第二课时学案.docx
  • 人教版化学必修一同步检测卷(一)化学实验基本方法测试卷扫描版.docx人教版化学必修一同步检测卷(一)化学实验基本方法测试卷扫描版.docx
  • 人教版化学必修1 第一章 从实验学化学  蒸馏和萃取 导学案.docx人教版化学必修1 第一章 从实验学化学  蒸馏和萃取 导学案.docx
  • 人教版化学化学课题1 分子和原子中考常考练习题专练.docx人教版化学化学课题1 分子和原子中考常考练习题专练.docx
  • 人教版化学初三下第十二单元12.2化学元素与人体健康教案.docx人教版化学初三下第十二单元12.2化学元素与人体健康教案.docx
  • 人教版化学初三下第九单元9.1溶液的形成教案.docx人教版化学初三下第九单元9.1溶液的形成教案.docx
  • 人教版化学初三下册:第9单元 课题3 溶质的质量分数(第3课时)学案.docx人教版化学初三下册:第9单元 课题3 溶质的质量分数(第3课时)学案.docx
  • 人教版化学初三下册:第9单元 课题3 溶质的质量分数(第2课时)学案.docx人教版化学初三下册:第9单元 课题3 溶质的质量分数(第2课时)学案.docx
  • 人教版化学初三下册:第9单元 课题2 溶解度(第2课时)学案.docx人教版化学初三下册:第9单元 课题2 溶解度(第2课时)学案.docx
  • 人教版化学初三下册:第8单元 课题3 金属资源的利用和保护(第2课时)学案.docx人教版化学初三下册:第8单元 课题3 金属资源的利用和保护(第2课时)学案.docx
  • 人教版化学初三下册:第8单元 课题2 金属的化学性质(第2课时)学案.docx人教版化学初三下册:第8单元 课题2 金属的化学性质(第2课时)学案.docx
  • 人教版化学初三下册:第11单元 课题2 化学肥料(第2课时)学案.docx人教版化学初三下册:第11单元 课题2 化学肥料(第2课时)学案.docx
  • 人教版化学初三下册:第11单元 课题1 生活中常见的盐(第3课时)学案.docx人教版化学初三下册:第11单元 课题1 生活中常见的盐(第3课时)学案.docx
  • 人教版化学初三下册:第11单元 课题1 生活中常见的盐(第2课时)学案.docx人教版化学初三下册:第11单元 课题1 生活中常见的盐(第2课时)学案.docx
  • 人教版化学初三下册:第10单元 课题2 酸和碱的中和反应(第2课时)学案.docx人教版化学初三下册:第10单元 课题2 酸和碱的中和反应(第2课时)学案.docx
  • 人教版化学初三下册:第10单元 课题1 常见的酸和碱(第1课时)学案.docx人教版化学初三下册:第10单元 课题1 常见的酸和碱(第1课时)学案.docx
  • 人教版化学初三下册教案:第9单元 课题3第2课时 溶液的综合计算.docx人教版化学初三下册教案:第9单元 课题3第2课时 溶液的综合计算.docx
  • 人教版化学初三下册教案:第9单元 课题3第1课时 溶质的质量分数.docx人教版化学初三下册教案:第9单元 课题3第1课时 溶质的质量分数.docx
  • 人教版化学初三下册教案:第9单元 课题2第2课时 溶解度.docx人教版化学初三下册教案:第9单元 课题2第2课时 溶解度.docx
  • 人教版化学初三下册教案:第9单元 课题2第1课时 饱和溶液与不饱和溶液.docx人教版化学初三下册教案:第9单元 课题2第1课时 饱和溶液与不饱和溶液.docx
  • 人教版化学初三下册教案:第9单元 课题1第2课时 溶解时的热量变化及乳化现象.docx人教版化学初三下册教案:第9单元 课题1第2课时 溶解时的热量变化及乳化现象.docx
  • 人教版化学初三下册教案:第9单元 课题1第1课时 溶液.docx人教版化学初三下册教案:第9单元 课题1第1课时 溶液.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1