2022年解析卷人教版数学八年级上册期中考试题 A卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年解析卷人教版数学八年级上册期中考试题 A卷含答案详解 2022 解析 卷人教版 数学 年级 上册 期中 考试题 答案 详解
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过
2、P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D52、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D43、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75D854、如图,在ABC中,D为BC上一点,12,34,BAC105,
3、则DAC的度数为()A80B82C84D865、如图,已知和都是等腰三角形,交于点F,连接,下列结论:;平分;其中正确结论的个数有() 线 封 密 内 号学级年名姓 线 封 密 外 A1个B2个C3个D4个二、多选题(5小题,每小题4分,共计20分)1、如图,在AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中正确的是( )AAODBOCBAPCBPDC点P在AOB的平分线上DCP=DP2、下列说法正确的是()A相等的角是对顶角B一个四边形的四个内角中最多可以有三个锐角C两条直线被第三条直线所截,内错角相等D两直线相交形成的四个角相等,则这两条直线互相垂直3、如图,已
4、知,下列结论正确的有()ABCD4、如图,下列条件中,能证明的是()A,B,C,D,5、如图,EADF,AE=DF,要使AECDFB,可以添加的条件有()AAB=CDBAC=BDCA=DDE=F第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、从六边形的一个顶点出发,可以画出条对角线,它们将六边形分成个三角形边形没有对角线,则的值为_2、如图,若ABCA1B1C1,且A110,B40,则C1_3、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_ 线 封 密 内 号学级年名姓 线 封 密 外 4、已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是_
5、(写出一个即可),5、如果三角形两条边分别为3和5,则周长L的取值范围是_四、解答题(5小题,每小题8分,共计40分)1、在中,直线经过点C,且于D,于E,(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问、具有怎样的等量关系?请直接写出这个等量关系2、已知:如图,ABC是任意一个三角形,求证:A+B+C=1803、如图,AC是BAE的平分线,点D是线段AC上的一点,CE,ABAD求证:BCDE4、如图(1),AB4cm,ACAB,BDAB,ACBD3cm点P在线段AB上以1cm/s的速度由点
6、A向点B运动,同时,点Q在线段BD上由点B向点D运动它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t1时,ACP与BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“ACAB,BDAB”改为“CABDBA60”,其他条件不变设点Q的运动速度为xcm/s,是否存在实数x,使得ACP与BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由5、如图,在五边形ABCDE中,AB=CD,ABC=BCD,BE,CE分别是ABC,BCD的角平分线(1)求证:ABEDCE;(2)当A=80,ABC=140,时,AED=_度(
7、直接填空)-参考答案- 线 封 密 内 号学级年名姓 线 封 密 外 一、单选题1、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平分BAC、ABCBAD+ABE=(A+B)=45APB=135,故正确BPD=45又PFADFPB=90+45=135APB=FPB又ABP=
8、FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD=SABP+SFPD+SPBD=SABP+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDH 线 封 密 内 号学级年名姓 线
9、封 密 外 DHBECDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型2、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形
10、中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键3、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:,故选B【考点】本题考查垂直的性质,解题关键在于在证明4、A【解析】【分析】根据三角形的内角和定理和三角形的外角性质即可解决【详解】解:BAC105,237512,431222把代入得:3275, 线 封 密 内 号学级年名姓 线 封 密 外 225DAC1052580故选A【考点
11、】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键5、C【解析】【分析】证明BADCAE,再利用全等三角形的性质即可判断;由BADCAE可得ABF=ACF,再由ABF+BGA=90、BGA=CGF证得BFC=90即可判定;分别过A作AMBD、ANCE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分BFE,即可判定;由AF平分BFE结合即可判定【详解】解:BAC=EADBAC+CAD=EAD+CAD,即BAD=CAE在BAD和CAE中AB=AC, BAD=CAE,AD=AEBADCAEBD=CE故正确;BADCAEABF=A
12、CFABF+BGA=90、BGA=CGFACF+BGA=90,BFC=90故正确;分别过A作AMBD、ANCE垂足分别为M、NBADCAESBAD=SCAE, BD=CEAM=AN平分BFE,无法证明AF平分CAD故错误; 线 封 密 内 号学级年名姓 线 封 密 外 平分BFE,故正确故答案为C【考点】本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键二、多选题1、ABCD【解析】【分析】根据题中条件,由两边夹一角可得AODBOC,得出对应角相等,又由已知得出AC=BD,可得APCBPD,同理连接OP,可证AOPBOP,进而可得
13、出结论【详解】解:OA=OB,OC=OD,AOB为公共角,AODBOC,A=B,又APC=BPD,ACP=BDP,OA-OC=OB-OD,即AC=BD,APCBPD,AP=BP,CP=DP,连接OP,即可得AOPBOP,得出 AOP= BOP,点P在AOB的平分线上故答案选:ABCD【考点】本题主要考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等的判定和性质2、BD【解析】【分析】根据对顶角的概念、四边形的性质、平行线的性质以及垂直的概念进行判断【详解】解:A.相等的角不一定是对顶角,而对顶角必定相等,故选项说法错误,不符合题意;B. 一个四边形的四个内角中最多可以有三个锐角,若
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
