《创新设计》2016数学湘教版必修1检测:第二章 指数函数、对数函数和幂函数2.4.2 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2016数学湘教版必修1检测:第二章 指数函数、对数函数和幂函数2.4.2 WORD版含解析 创
- 资源描述:
-
1、2.4.2计算函数零点的二分法学习目标1.能用二分法求出方程的近似解.2.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想知识链接现有一款三星手机,目前知道它的价格在5001 000元之间,你能在最短的时间内猜出与它最近的价格吗?(误差不超过20元),猜价格方案:(1)随机;(2)每次增加20元;(3)每次取价格范围内的中间价,采取哪一种方案好呢?预习导引用二分法求函数零点的一般步骤已知函数yf(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它与零点的误差不超过正数,即使得|xx0|.用二分法求函数零点的一般步骤如下:(1)在D内取一个闭区间a0,b0D,使f(a0)
2、与f(b0)异号,即f(a0)f(b0)0,零点位于区间a0,b0中(2)取区间a0,b0的中点,则此中点对应的横坐标为x0.计算f(x0)和f(a0)并判断:如果f(x0)0,则x0就是f(x)的零点,计算终止;如果f(a0)f(x0)0,则零点位于区间a0,x0中,令a1a0,b1x0;如果f(a0)f(x0)0,则零点位于区间x0,b0中,令a1x0,b1b0.(3)对区间a1,b1,按(2)中的方法,可以得到区间a2,b2,且它的长度是区间a1,b1长度的一半如此反复地二分下去,可以得到一系列有限区间a0,b0,a1,b1,a2,b2,a3,b3,其中每个区间的长度都是它前一个区间长度
3、的一半继续实施上述步骤,函数的零点总位于区间an,bn上,当|anbn|2时,区间an,bn的中点xn(anbn)就是函数yf(x)的近似零点,计算终止这时函数yf(x)的近似零点与真正零点的误差不超过.要点一二分法概念的理解例1下列图象与x轴均有交点,其中不能用二分法求函数零点的是()答案A解析按定义,f(x)在a,b上是连续的,且f(a)f(b)0,才能不断地把函数零点所在的区间一分为二,进而利用二分法求出函数的零点故结合各图象可得选项B、C、D满足条件,而选项A不满足,在A中,图象经过零点x0时,函数值不变号,因此不能用二分法求解故选A.规律方法1.准确理解“二分法”的含义二分就是平均分
4、成两部分二分法就是通过不断地将所选区间一分为二,逐步逼近零点的方法,找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点2“二分法”与判定函数零点的定义密切相关,只有满足函数图象在零点附近连续且在该零点左右函数值异号才能应用“二分法”求函数零点跟踪演练1(1)下列函数中,能用二分法求零点的为()(2)用二分法求函数f(x)在区间a,b内的零点时,需要的条件是()f(x)在区间a,b内连续不断;f(a)f(b)0;f(a)f(b)0;f(a)f(b)0.ABC D答案(1)B(2)A解析(1)函数图象连续不断,函数零点附近的函数值异号,这样的函数零点才能使用二分法
5、求解,观察四个函数图象,只有B选项符合(2)由二分法的意义,知选A.要点二用二分法求方程的近似解例2用二分法求方程x2100在区间3.1,3.2上的近似解(误差不超过0.001,即0.001)解设f(x)x210,则f(3.1)0.39,f(3.2)0.24.取a03.1,b03.2,有f(a0)f(b0)0.列表计算:nanbnbnanf(an)f(bn)xn03.100 03.200 00.100 00.390 00.240 03.150 013.150 03.200 00.050 00.077 50.240 03.175 023.150 03.175 00.025 00.077 50.0
6、80 63.162 533.150 03.162 50.012 50.077 50.001 43.156 343.156 33.162 50.006 20.037 80.001 43.159 453.159 43.162 50.003 10.018 20.001 43.161 063.161 03.162 50.001 50.008 10.001 43.161 8由于b6a60.001 50.0022,计算停止,取x63.161 753.162为方程的近似解规律方法给定,用二分法求f(x)零点近似值的步骤如下:(1)确定区间a,b,验证f(a)f(b)0;(2)求区间(a,b)的中点c;(3)
7、计算f(c);若f(c)0,则c就是函数的零点;若f(a)f(c)0,则令bc(此时零点x0(a,c);若f(a)f(c)0,则令ac(此时零点x0(c,b)(4)重复第(3)步,可得到一系列有限区间,其中每个区间的长度都是它前一个区间长度的一半,当所在区间值小于2时,区间中点就是函数f(x)的近似零点跟踪演练2若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为_(只填序号)(,11,22,33,44,55,66,)x123456f(x)136.12315.5423.93010.67850.667305.678答案1用二分法求函数f(x)x35的零点可以取的
8、初始区间是()A2,1B1,0C0,1 D1,2答案A解析f(2)30,f(1)60,f(2)f(1)0,故可取2,1作为初始区间,用二分法逐次计算2定义在R上的函数f(x)的图象是连续不断的曲线,已知函数f(x)在区间(a,b)上有一个零点x0,且f(a)f(b)0,用二分法求x0时,当f0时,则函数f(x)的零点是()A(a,b)外的点BxC区间或内的任意一个实数Dxa或xb答案B解析由二分法的思想,采用二分法得到的零点可能是准确值,也可能是近似值由f0,知选B.3函数f(x)的图象是连续不断的曲线,在用二分法求方程f(x)0在(1,2)内近似解的过程中得f(1)0,f(1.5)0,f(1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-788045.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022届普通高等学校招生全国统一模拟测试语文试题(七).pdf
