专题12 最值模型-费马点问题(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题12 最值模型-费马点问题原卷版 专题 12 模型 费马点 问题 原卷版
- 资源描述:
-
1、专题12 最值模型-费马点问题最值问题在中考数学常以压轴题的形式考查,费马点问题是由全等三角形中的手拉手模型衍生而来,主要考查转化与化归等的数学思想。在各类考试中都以中高档题为主,中考说明中曾多处涉及。本专题就最值模型中的费马点问题进行梳理及对应试题分析,方便掌握。【模型背景】皮耶德费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等费马点:三角形内的点到三个顶点距离之和最小的点。【模型解读】结论1:如图,点M为ABC
2、内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120时,MA+MB+MC的值最小。注意:上述结论成立的条件是ABC的最大的角要小于120,若最大的角大于或等于120,此时费马点就是最大角的顶点A。(这种情况一般不考,通常三角形的最大顶角都小于120)【模型证明】以AB为一边向外作等边三角形ABE,将BM绕点B逆时针旋转60得到BN,连接ENABE为等边三角形,ABBE,ABE60而MBN60,ABMEBN在AMB与ENB中,AMBENB(SAS)连接MN由AMBENB知,AMENMBN60,BMBN,BMN为等边三角形BMMNAM+BM+CMEN+MN+CM当E、N、M、C四点共
3、线时,AM+BM+CM的值最小此时,BMC180NMB120;AMBENB180BNM120;AMC360BMCAMB120费马点的作法:如图3,分别以ABC的AB、AC为一边向外作等边ABE和等边ACF,连接CE、BF,设交点为M,则点M即为ABC的费马点。结论2:点P为锐角ABC内任意一点,连接AP、BP、CP,求xAP+yBP+zCP最小值。(加权费马点)【模型证明】第一步,选定固定不变线段;第二步,对剩余线段进行缩小或者放大。如:保持BP不变,xAP+yBP+zCP=,如图,B、P、P2、A2四点共线时,取得最小值。模型特征:PA+PB+PC(P为动点)一动点,三定点;以三角形的三边向
4、外作等边三角形的,再分别将所作等边三角形最外的顶点与已知三角形且与所作等边三角形相对的顶点相连,连线的交点即为费马点;同时线段前可以有不为1的系数出现,即:加权费马点。【最值原理】两点之间,线段最短。例1(2021山东滨州中考真题)如图,在中,若点P是内一点,则的最小值为_例2(2021辽宁丹东中考真题)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点如果是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足(例如:等边三角形的费马点是其三条高的交点)若,P为的费马点,则_;若,P为的费马点,则_例3.(2022宜宾中考真题)如图,和都是等腰直角三角形,点D是BC边上的动点(不与
5、点B、C重合),DE与AC交于点F,连结CE下列结论:;若,则;在内存在唯一一点P,使得的值最小,若点D在AP的延长线上,且AP的长为2,则其中含所有正确结论的选项是()ABCD例4(2022江苏九年级阶段练习)探究题(1)知识储备:如图1,已知点P为等边ABC外接圆的弧BC上任意一点求证:PB+PC=PA定义:在ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为ABC的费马点,此时PA+PB+PC的值为ABC的费马距离(2)知识迁移:我们有如下探寻ABC(其中A,B,C均小于120)的费马点和费马距离的方法:如图2,在ABC的外部以BC为边长作等边BCD及其外接圆,根据
6、(1)的结论,易知线段_的长度即为ABC的费马距离(3)知识应用:如图3所示的ABC(其中均小于),现取一点P,使点P到三点的距离之和最小,求最小值;如图4,若三个村庄构成RtABC,其中现选取一点P打水井,使P点到三个村庄铺设的输水管总长度最小,画出点P所对应的位置,输水管总长度的最小值为_(直接写结果)例5(2020重庆中考真题)如图,在中,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90,得到AE,连接CE,DE点F是DE的中点,连接CF(1)求证:;(2)如图2所示,在点D运动的过程中,当时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(
7、3)在点D运动的过程中,在线段AD上存在一点P,使的值最小当的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长例6(2022河北九年级专题练习)如图,在平面直角坐标系xoy中,点B的坐标为(0,2),点在轴的正半轴上,OE为BOD的中线,过B、两点的抛物线与轴相交于、两点(在的左侧).(1)求抛物线的解析式;(2)等边的顶点M、N在线段AE上,求AE及的长;(3)点为内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.例7(2022浙江九年级专题练习)如图,ABC中,BAC45,AB6,AC4,P为平面内一点,求最小值课后专项训练1(2021山东淄博市中考真题)两张宽
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022一年级数学下册 2 20以内的退位减法练习课(第5-8课时)作业课件 新人教版.pptx
