分享
分享赚钱 收藏 举报 版权申诉 / 19

类型人教版九年级数学上册第二十一章一元二次方程专题攻克练习题(详解).docx

  • 上传人:a****
  • 文档编号:869283
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:19
  • 大小:186.48KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二十一 一元 二次方程 专题 攻克 练习题 详解
    资源描述:

    1、九年级数学上册第二十一章一元二次方程专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知x1、x2是关于x的方程x2ax2=0的两根,下列结论一定正确的是()Ax1x2Bx1+x20Cx1x20D

    2、x10,x202、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A9人B10人C11人D12人3、某市从2017年开始大力发展“竹文化”旅游产业据统计,该市2017年“竹文化”旅游收入约为2亿元预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A2%B4.4%C20%D44%4、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()ABCD5、若a是关于x的方程3x2x1=0的一个根,则20216a22a的值是()A2023B2022C202

    3、0D20196、下列方程:;是一元二次方程的是()ABCD7、一元二次方程的解是A,B,C,D,8、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-29、已知、是一元二次方程的两个根,则的值是( )A1BCD10、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A80(1+x)2=100B100(1x)2=80C80(1+2x)=100D80(1+x2)=100第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若m,n是关于x的方程x2-3x-30的两根

    4、,则代数式m2+n2-2mn_2、若关于x的一元二次方程x2+mx+2n0有一个根是2,则m+n_3、一元二次方程的解为_4、方程的根是_5、关于的方程有两个不相等的实数根,则的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件现服装店决定采取适当的降价措施,扩大销售量,增加盈利经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)要想平均每天盈利2000

    5、元,可能吗?请说明理由2、解方程:(1)2x(x2)x23;(2)3、用适当的方法解下列方程:(1)x2x10;(2)3x(x2)x2;(3)x22x10;(4)(x8)(x1)124、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值5、用配方法解方程:-参考答案-一、单选题1、A【解析】【分析】A、根据方程的系数结合根的判别式,可得出0,由此即可得出x1x2,结论A正确;B、根

    6、据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1x2=2,结论C错误;D、由x1x2=2,可得出x10,x20,结论D错误综上即可得出结论【详解】A=(a)241(2)=a2+80,x1x2,结论A符合题意;B、x1、x2是关于x的方程x2ax2=0的两根,x1+x2=a,a的值不确定,B结论不一定正确,不符合题意;C、x1、x2是关于x的方程x2ax2=0的两根,x1x2=2,结论C错误,不符合题意;D、x1x2=2,x10,x20,结论D错误,不符合题意故选A【考点】本题考查了根的判别式以及根与系数的关系,牢记“当0时,方程有

    7、两个不相等的实数根”是解题的关键2、C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【考点】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.3、C【解析】【详解】分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论详解:设该市2018年、2

    8、019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=2.2(不合题意,舍去)答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%故选C点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键4、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可【详解】解:设有x个队参赛,根据题意,可列方程为:x(x1)36,故选A【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.5、D【解析】【

    9、分析】先把a代入方程得到3a2-a=1,然后方程两边都乘以-2得-6a2+2a=-2,从而求出答案【详解】解:由题意得:3a2-a-1=0,3a2-a=1,-6a2+2a=-2,20216a22a =2021-2=2019故选:D【考点】本题考查的是逆用一元二次方程解的定义得出-6a2+2a的值,因此在解题时要重视解题思路的逆向分析6、D【解析】【分析】根据一元二次方程的定义进行判断【详解】该方程符合一元二次方程的定义;该方程中含有2个未知数,不是一元二次方程;该方程含有分式,它不是一元二次方程;该方程符合一元二次方程的定义;该方程符合一元二次方程的定义综上,一元二次方程故选:D【考点】本题考

    10、查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是27、A【解析】【分析】先把方程化为一般式, 然后利用因式分解法解方程 【详解】解:,或,所以,故选【考点】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想) 8、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可

    11、【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故选:C【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x29、D【解析】【分析】根据、是一元二次方程的两个根得到,再将变形为,然后代入计算即可【详解】解:、是一元二次方程的两个根,选D【考点】本题主要考查了一元二次方程的根与系数的关系:若方程的两根为、,则,熟记知识点与代数式变形是解题的关键10、A【解析】【分析】利用增长后的量=增长前的量(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【详解】由题意知,蔬菜产量的年平均增长率为x,根

    12、据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A【考点】本题考查了一元二次方程的应用(增长率问题)解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程二、填空题1、21【解析】【分析】先根据根与系数的关系得到m+n3,mn3,再根据完全平方公式变形得到m2+n22mn(m+n)24mn,然后利用整体代入的方法计算【详解】解:m,n是关于x的方程x2-3x-30的两根,m+n3,mn3,m2+n22mn

    13、(m+n)24mn324(3)21故答案为:21【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x22、2【解析】【分析】根据一元二次方程的解的定义把x2代入得到得 然后利用整体代入的方法进行计算【详解】2是关于x的一元二次方程的一个根,nm2,故答案为2【考点】本题考查了一元二次方程的解,掌握方程的解的定义是解决本题的关键.3、x=或x=2【解析】【分析】根据一元二次方程的解法解出答案即可【详解】当x2=0时,x=2,当x20时,4x=1,x=,故答案为:x=或x=2【考点】本题考查解一元二次方程,本题关键在于分情况讨论4、【解

    14、析】【分析】根据题意得出配方得出,开方得出:,即可求解得出根【详解】解:配方得出,故答案为:【考点】本题考查了运用配方法求解二次方程的根的问题,难度很小,很容易做出,本题属于基础题5、且【解析】【分析】若一元二次方程有两个不相等的实数根,则=b2-4ac0,建立关于k的不等式,求得k的取值范围,还要使二次项系数不为0【详解】方程有两个不相等的实数根, 解得:,又二次项系数故答案为且【考点】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.三、解答题1、 (1)每件降价20元(2)不可能,理由见解析【解析】【分析】(1)根据题意列出方

    15、程,即每件服装的利润销售量=总盈利,再求解,把不符合题意的舍去;(2)根据题意列出方程进行求解即可(1)解:设每件服装降价x元由题意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(2)解:不可能,理由如下:依题意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,=(-30)2-4600=900-2400=-15000,则原方程无实数解则不可能每天盈利2000元【考点】本题考查了一元二次方程的应用,解题的关

    16、键是找准等量关系,正确列出一元二次方程2、(1)x1=3,x2=1;(2)x1=,x2=0【解析】【分析】(1)先去括号,移项,合并同类项,再利用因式分解法求解即可;(2)直接利用因式分解法求解即可【详解】解:(1)2x(x2)x23,去括号得:2x24x-x2+3=0,合并同类项得:x24x+3=0,分解因式得:(x-3)(x-1)=0,解得:x1=3,x2=1;(2),分解因式得:,x1=,x2=0【考点】本题主要考查解一元二次方程,熟练掌握因式分解法解方程,是解题的关键3、 (1),(2)x1,x22(3)x1,x2(4)x14,x25【解析】【分析】(1)利用公式法解答,即可求解;(2

    17、)利用因式分解法解答,即可求解;(3)利用配方法解答,即可求解;(4)利用因式分解法解答,即可求解(1)解: a1,b1,c1b24ac(1)241(1)5x即原方程的根为x1,x2(2)解:移项,得3x(x2)(x2)0,即(3x1)(x2)0,x1,x22(3)解:配方,得(x)21,x1x11,x21(4)解:原方程可化为x29x200,即(x4)(x5)0,x14,x25【考点】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键4、 (1)m的值为1或-2(2)-2m1(3)m或m【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用

    18、m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.5、x1+3,x23【解析】【分析】根据配方法,两边配上一次项系数一半的平方即可得到,然后利用直接开平方法求解【详解】解:x2-2x4,x2-2x+54+5,即(x-)29,x-3,x1+3,x23【考点】本题主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法与步骤是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十一章一元二次方程专题攻克练习题(详解).docx
    链接地址:https://www.ketangku.com/wenku/file-869283.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1