分享
分享赚钱 收藏 举报 版权申诉 / 10

类型人教版高中数学选修2-1第二章圆锥曲线与方程2.3双曲线(教师版)【个性化辅导含答案】.docx

  • 上传人:a****
  • 文档编号:909134
  • 上传时间:2025-12-18
  • 格式:DOCX
  • 页数:10
  • 大小:142.90KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    个性化辅导含答案
    资源描述:

    1、双曲线 _1.了解双曲线的定义、几何图形和标准方程及简单性质2.了解双曲线的实际背景及双曲线的简单应用3.理解数形结合的思想1双曲线的定义平面内动点与两个定点F1,F2(|F1F2|2c0)的距离差的绝对值等于常数(小于|F1F2|大于零),则点的轨迹叫双曲线这两个定点叫双曲线的焦点,两焦点间的距离叫焦距集合PM|MF1|MF2|2a,|F1F2|2c,其中a,c为常数且a0,c0:(1)若ac时,则集合P为空集2双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴;对称中心:原点顶点A1(a,0),A2(a,0)A

    2、1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,)实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长a,b,c的关系c2a2b2(ca0,cb0)类型一双曲线的定义及应用例1:(1)已知圆C1:(x3)2y21和圆C2:(x3)2y29,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为_【解析】利用动圆M同时与圆及圆外切,可得的轨迹为到定点,距离差为常数2的点的集合,即双曲线的左支,从而可得方程.【答案】动圆的圆心为,动圆的圆心为动圆M同时与圆及圆外切,动圆M的半

    3、径,即的轨迹为到定点,距离差为常数2的点的集合,即双曲线的左支的轨迹方程为因此,本题正确答案是:练习1:已知双曲线x2y21,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1PF2,则|PF1|PF2|的值为_【答案】练习2:设P是双曲线1上一点,F1,F2分别是双曲线左、右焦点,若|PF1|9,则|PF2|()A1B17C1或17D以上答案均不对【答案】B练习3:已知F是双曲线1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|PA|的最小值为()A5B54C7D9【答案】D类型二双曲线的标准方程例2:已知双曲线中心在原点且一个焦点为F1(,0),点P位于该双曲线上,线段PF1

    4、的中点坐标为(0,2),则双曲线的方程是()A.BC.D.【解析】F1(,0),PF1的中点坐标为(0,2),P的坐标为(,4)又双曲线的一个焦点为F1(,0),另一个焦点为F2(,0)2a|PF1|PF2|2.a1.又c,b2c2a24.双曲线方程为x21.【答案】B练习1:设双曲线与椭圆1有共同的焦点,且与椭圆相交,一个交点的坐标为(,4),则此双曲线的标准方程是_【答案】根据题意可以知道椭圆的焦点在y轴上,且,故焦点坐标为由双曲线的定义可得,故,故所求双曲线的标准方程为因此,本题正确答案是:规律方法待定系数法求双曲线方程具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a

    5、,b,c,e及渐近线之间的关系,求出a,b的值如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为(0),再由条件求出的值即可练习2:根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为;(2)焦距为26,且经过点M(0,12);(3)经过两点P(3,2)和Q(6,7)【答案】(1)设双曲线的标准方程为1或1(a0,b0)由题意知,2b12,e.b6,c10,a8.双曲线的标准方程为1或1.(2)双曲线经过点M(0,12),M(0,12)为双曲线的一个顶点,故焦点在y轴上,且a12.又2c26,c13.b2c2a225.双曲线的标准方程为1.(3)设双曲线方

    6、程为mx2ny21(mn0)双曲线的标准方程为1.类型三双曲线的几何性质例3:(1)设F1,F2分别为双曲线的左、右焦点若在双曲线右支上存在点P,满足|PF2|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A3x4y0B3x5y0C4x3y0D5x4y0【解析】等腰三角形中,到的距离为2a化简得所以渐近线方程【答案】C练习1: 设直线x3ym0(m0)与双曲线1(a0,b0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|PB|,则该双曲线的离心率是_【答案】:练习2:设a1,则双曲线的离心率e的取值范围是()A(,2)B(,)C(2,5)D(2

    7、,)【解析】e.a1,01,112,er2,椭圆的长半轴长为a1,双曲线的实半轴长为a2,椭圆、双曲线的离心率分别为e1,e2.则由椭圆、双曲线的定义,得r1r22a1,r1r22a2,平方得4arr2r1r2,4ar2r1r2r.又由余弦定理得4c2rrr1r2,消去r1r2,得a3a4c2,即4.所以由柯西不等式得.所以.7.中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且F1F22,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为37.(1)求这两曲线方程;(2)若P为这两曲线的一个交点,求F1PF2的面积【答案】解:(1)设椭圆方程为,双曲线方程为(a,b,m,

    8、n0,且ab),则解得:a7,m3,b6,n2,椭圆方程为,双曲线方程为.(2)不妨设F1,F2分别为左、右焦点,P是第一象限的一个交点,则PF1PF214,PF1PF26,PF110,PF24,cosF1PF2,sinF1PF2.SF1PF2PF1PF2sinF1PF210412._基础巩固1. 下列双曲线中,焦点在轴上且渐近线方程为的是()AB.C.D.【答案】C2.以椭圆两焦点为直径端点的圆,交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,那么这个椭圆的离心率等于()【答案】C3. 过双曲线的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则()A.B

    9、.C.6D.【答案】D4. 设双曲线(a0,b0)的右焦点为1,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A、B、C、D、【答案】A5.设F1、F2为椭圆的两个焦点,椭圆上有一点P与这两个焦点张成90度的角,且PF1F2PF2F1,若椭圆离心率为,则PF1F2:PF2F1为()A1:5B1:3C1:2D1:l【答案】A能力提升6. 已知ab0,椭圆C1的方程为1,双曲线C2的方程为1,C1与C2的离心率之积为,则C2的渐近线方程为()A.xy0B.xy0C.x2y0D.2xy0【答案】A7.设

    10、F1,F2是双曲线x21的两个焦点,P是双曲线上的一点,且3|PF1|4|PF2|,则PF1F2面积等于()A4B8C24D48【答案】C8. 设是双曲线:的一个焦点,若上存在点,使线段的中点恰为其虚轴的一个端点,则的离心率为_【答案】.9. 如图17,O为坐标原点,椭圆C1:1(ab0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2,且|F2F4|1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值图17【答案】(1)由题可得,且

    11、,因为,且,所以且且,所以椭圆方程为,双曲线的方程为.(2)由(1)可得,因为直线不垂直于轴,所以设直线的方程为,联立直线与椭圆方程可得,则,则,因为在直线上,所以,则直线的方程为,联立直线与双曲线可得,则,则,设点到直线的距离为,则到直线的距离也为,则,因为在直线的两端,所以,则,又因为在直线上,所以,则四边形面积,因为,所以当时,四边形面积的最小值为.10.直线l:ykx1与双曲线C:2x2y21的右支交于不同的两点A、B.(1)求实数k的取值范围;(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由【答案】解:(1)将直线l的方程ykx1代入双曲线C的方程2x2y21后,整理得,(k22)x22kx20.依题意,直线l与双曲线C的右支交于不同两点,故解得k的取值范围是2k.(2)设A、B两点的坐标分别为(x1,y1)、(x2,y2),则由式得假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0)则由FAFB得(x1c)(x2c)y1y20,即(x1c)(x2c)(kx11)(kx21)0.整理得(k21)x1x2(kc)(x1x2)c210.把式及c代入式化简得5k22k60.解得k或k(舍去)可知k时使得以线段AB为直径的圆经过双曲线C的右焦点F.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版高中数学选修2-1第二章圆锥曲线与方程2.3双曲线(教师版)【个性化辅导含答案】.docx
    链接地址:https://www.ketangku.com/wenku/file-909134.html
    相关资源 更多
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【考试直接用】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【考试直接用】.docx
  • 2017-2018学年高中数学人教A版选修1-2课件:复习课(一) 统计案例 .ppt2017-2018学年高中数学人教A版选修1-2课件:复习课(一) 统计案例 .ppt
  • 2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-2 复数代数形式的四则运算 第2课时 复数代数形式的乘除运算 .ppt2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-2 复数代数形式的四则运算 第2课时 复数代数形式的乘除运算 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【综合卷】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【综合卷】.docx
  • 2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-2 复数代数形式的四则运算 第1课时 复数代数形式的加减运算及其几何意义 .ppt2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-2 复数代数形式的四则运算 第1课时 复数代数形式的加减运算及其几何意义 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【最新】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【最新】.docx
  • 2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-1系数的扩充和复数的概念 第2课时 复数的几何意义 .ppt2017-2018学年高中数学人教A版选修1-2创新应用课件:第三章 3-1系数的扩充和复数的概念 第2课时 复数的几何意义 .ppt
  • 2017-2018学年高中数学人教A版选修1-1课件:第二章 2-3 第1课时 抛物线及其标准方程 .PPT2017-2018学年高中数学人教A版选修1-1课件:第二章 2-3 第1课时 抛物线及其标准方程 .PPT
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【培优b卷】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【培优b卷】.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第二章 2-2 第2课时 双曲线的简单几何性质 .PPT2017-2018学年高中数学人教A版选修1-1课件:第二章 2-2 第2课时 双曲线的简单几何性质 .PPT
  • 小学二年级数学《角的初步认识》精选测试题及参考答案【名师推荐】.docx小学二年级数学《角的初步认识》精选测试题及参考答案【名师推荐】.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第三章 3-4 第1课时变化率问题、导数的概念 .PPT2017-2018学年高中数学人教A版选修1-1课件:第三章 3-4 第1课时变化率问题、导数的概念 .PPT
  • 2017-2018学年高中数学人教A版选修1-1课件:第三章 3-3 第2课时函数的极值与导数 .PPT2017-2018学年高中数学人教A版选修1-1课件:第三章 3-3 第2课时函数的极值与导数 .PPT
  • 小学二年级数学《角的初步认识》精选测试题及参考答案ab卷.docx小学二年级数学《角的初步认识》精选测试题及参考答案ab卷.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第三章 3-2 导数的计算 .PPT2017-2018学年高中数学人教A版选修1-1课件:第三章 3-2 导数的计算 .PPT
  • 小学二年级数学《角的初步认识》精选测试题及参考答案1套.docx小学二年级数学《角的初步认识》精选测试题及参考答案1套.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第3章 导数及其应用3-3-3 .ppt2017-2018学年高中数学人教A版选修1-1课件:第3章 导数及其应用3-3-3 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及参考答案.docx小学二年级数学《角的初步认识》精选测试题及参考答案.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第3章 导数及其应用3-3-1 .ppt2017-2018学年高中数学人教A版选修1-1课件:第3章 导数及其应用3-3-1 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及免费答案.docx小学二年级数学《角的初步认识》精选测试题及免费答案.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第2章 圆锥曲线与方程2-1-1 .ppt2017-2018学年高中数学人教A版选修1-1课件:第2章 圆锥曲线与方程2-1-1 .ppt
  • 2017-2018学年高中数学人教A版选修1-1课件:第17课时函数的极值与导数( 40张) .ppt2017-2018学年高中数学人教A版选修1-1课件:第17课时函数的极值与导数( 40张) .ppt
  • 小学二年级数学《角的初步认识》精选测试题及免费下载答案.docx小学二年级数学《角的初步认识》精选测试题及免费下载答案.docx
  • 小学二年级数学《角的初步认识》精选测试题及下载答案.docx小学二年级数学《角的初步认识》精选测试题及下载答案.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:第14课时变化率与导数( 37张) .ppt2017-2018学年高中数学人教A版选修1-1课件:第14课时变化率与导数( 37张) .ppt
  • 2017-2018学年高中数学人教A版选修1-1课件:章末整合提升2 .ppt2017-2018学年高中数学人教A版选修1-1课件:章末整合提升2 .ppt
  • 小学二年级数学《角的初步认识》精选测试题及一套答案.docx小学二年级数学《角的初步认识》精选测试题及一套答案.docx
  • 2017-2018学年高中数学人教A版选修1-1课件:章末整合提升1 .ppt2017-2018学年高中数学人教A版选修1-1课件:章末整合提升1 .ppt
  • 2017-2018学年高中数学人教A版选修1-1课件:1-1-2、1-1-3 .ppt2017-2018学年高中数学人教A版选修1-1课件:1-1-2、1-1-3 .ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1