全国通用版2022高考数学二轮复习压轴大题突破练四函数与导数2理.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用版 2022 高考 数学 二轮 复习 压轴 突破 函数 导数
- 资源描述:
-
1、(四)函数与导数(2)1(2022江西省重点中学协作体联考)已知f(x)ex,g(x)x2ax2xsin x1.(1)证明:1xex(x0,1);(2)若x0,1)时,f(x)g(x)恒成立,求实数a的取值范围(1)证明设h(x)ex1x,则h(x)ex1,故h(x)在(,0)上单调递减,在(0,)上单调递增从而h(x)h(0)0,即ex1x.而当x0,1)时,ex1x,即ex.(2)解设F(x)f(x)g(x)ex(x2ax2xsin x1),则F(0)0,F(x)ex(2xa2xcos x2sin x)要求F(x)0在0,1)上恒成立,必须有F(0)0.即a1.以下证明:当a1时,f(x)
2、g(x)只要证1xx2x2xsin x1,只要证2sin xx在0,1)上恒成立令(x)2sin xx,则(x)2cos x10对x0,1)恒成立,又(0)0,所以2sin xx,从而不等式得证2(2022宿州质检)设函数f(x)xaxln x(aR)(1)讨论函数f(x)的单调性;(2)若函数f(x)的极大值点为x1,证明:f(x)exx2.(1)解f(x)的定义域为(0,),f(x)1aln xa,当a0时,f(x)x,则函数f(x)在区间(0,)上单调递增;当a0时,由f(x)0得x,由f(x)0得0x.所以f(x)在区间上单调递减,在区间上单调递增;当a0得0x,由f(x),所以函数f
3、(x)在区间上单调递增,在区间上单调递减综上所述,当a0时,函数f(x)在区间(0,)上单调递增;当a0时,函数f(x)在区间上单调递减,在区间上单调递增;当a0时,函数f(x)在区间上单调递增,在区间上单调递减(2)证明由(1)知a0),则F(x)1 .令g(x)xex,得函数g(x)在区间(0,)上单调递增而g(1)10,g(0)10,所以在区间(0,)上存在唯一的实数x0,使得g(x0)x00,即x0,且x(0,x0)时,g(x)0.故F(x)在(0,x0)上单调递减,在(x0,)上单调递增F(x)minF(x0)ln x0 x01.又x0,F(x)minln x0x01 x01x010
4、.F(x)F(x0)0成立,即f(x)exx2成立3(2022皖江八校联考)已知函数f(x).(1)若a0,函数f(x)的极大值为,求实数a的值;(2)若对任意的a0,f(x)在x0,)上恒成立,求实数b的取值范围解(1)由题意,f(x)(2ax1)ex(ax2xa)exexax2(12a)xa1 ex(x1)(ax1a)当a0时,f(x)ex(x1),令f(x)0,得x1;令f(x)1,所以f(x)在(,1)上单调递增,在(1,)上单调递减所以f(x)的极大值为f(1),不合题意当a0时,10,得1x1;令f(x)0,得x1,所以f(x)在上单调递增,在,(1,)上单调递减所以f(x)的极大
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
