圆锥曲线专题:定值问题中常见的7种考法(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 专题 问题 常见 种考法 原卷版
- 资源描述:
-
1、圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:或、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进
2、行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线
3、性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。四、常用的弦长公式:(1) 若直线的方程设为,则(2) 若直线的方程设为,则【注】上式中代表的是将直线方程带入圆锥曲线方程后,化简得出的关于或的一元二次方程的二次项系数。代表的是该一元二次方程的判别式。题型一 斜率型定值问题【例1】已知双曲线过点,且离心率(1)求该双曲线的标准方程:(2)如果,为双曲线上的动点,直线与直线的斜率互为相反数,证明直线的斜率为定值,并求出该定值.【变式1-1】已知椭圆的一个焦点
4、为,过点且与轴不重合的直线与椭圆交于两点.(1)若线段中点的横坐标为,求直线的方程;(2)设直线与直线交于点,点满足轴,轴,试求直线的斜率与直线的斜率的比值.【变式1-2】已知双曲线:的右焦点为,左顶点为A,且,到C的渐近线的距离为1,过点的直线与双曲线C的右支交于P,Q两点,直线AP,AQ与y轴分别交于M,N两点.(1)求双曲线C的标准方程.(2)若直线MB,NB的斜率分别为,判断是否为定值.若是,求出该定值;若不是,请说明理由.【变式1-3】已知抛物线C:的焦点为F,以抛物线上一动点M为圆心的圆经过点F,若圆M的面积最小值为.(1)求p的值;(2)当点M的横坐标为1且位于第一象限时,过M作
5、抛物线的两条弦MA,MB,且满足证明:直线AB的斜率为定值题型二 距离型定值问题【例2】已知椭圆与直线相切于点,且点在第一象限,若直线与轴、轴分别交于点、若过原点O的直线与垂直交与点, 证明:定值【变式2-1】已知椭圆的离心率为,若与圆相交于M,N两点,且圆E在内的弧长为(1)求的值;(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:为定值【变式2-2】已知双曲线的离心率为2,右顶点到一条渐近线的距离为.(1)求双曲线的方程;(2)若直线与双曲线交于两点,且为坐标原点,点到直线的距离是否为定值?若是,求出这个定值;若不是,请说明理由.【变式2-3】已知抛物线:的焦点为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
