基础强化人教版九年级数学上册第二十二章二次函数专项练习练习题(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 专项 练习 练习题 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十二章二次函数专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在“探索函数的系数,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,同学们探索了经过这四个点中的三个点
2、的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为()ABCD2、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD3、下列关于二次函数的说法,正确的是()A对称轴是直线B当时有最小值C顶点坐标是D当时,y随x的增大而减少4、下列函数中,二次函数是()Ay4x+5Byx(2x3)Cyax2+bx+cD5、对于抛物线,下列说法正确的是()A抛物线开口向上B当时,y随x增大而减小C函数最小值为2D顶点坐标为(1,2)6、二次函数的图象的对称轴是()ABCD7、关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值68、在
3、平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD9、已知点(1,y1),(2,y2)都在函数yx2的图象上,则()Ay1y2By1y2Cy1y2Dy1,y2大小不确定10、如图,在平面直角坐标系中,二次函数yx22xc的图象与x轴交于A、C两点,与y轴交于点B(0,3),若P是x轴上一动点,点D(0,1)在y轴上,连接PD,则PDPC的最小值是()A4B22C2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我们用符号表示不大于的最大整数例如:,那么:(1)当时,的取值范围是_;(2)当时,函数的
4、图象始终在函数的图象下方则实数的范围是_2、已知二次函数y(xm)2m21,且(1)当m1时,函数y有最大值_(2)当函数值y恒不大于4时,实数m的范围为_3、在函数中,当x1时,y随x的增大而 _(填“增大”或“减小”)4、如图所示四个二次函数的图象中,分别对应的是yax2;ybx2;ycx2;ydx2则a、b、c、d的大小关系为_5、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_三、解答题(5小题,每小题10分,共计50分)1、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为求二次函数的解析式和直线的解析式;点是直线上的一个动点,过
5、点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由2、某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况
6、,为了每月所获利润最大,该商品销售单价应定为多少元?3、如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点(1)求点C及顶点M的坐标;(2)在抛物线的对称轴上找一点P,使得PA+PC的值最小,请求出点P的坐标并求出最小值;(3)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求面积的最大值及此时点N的坐标4、在美化校园的活动中,某兴趣小组用总长为米的围栏材料,一面靠墙,围成一个矩形花园,墙长米,设的长为米,矩形花园的面积为平方米,当为多少时,取得最大值,最大值是多少?5、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点在
7、抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由-参考答案-一、单选题1、A【解析】【分析】分四种情况讨论,利用待定系数法,求过,中的三个点的二次函数解析式,继而解题【详解】解:设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;最大为,故选:A【考点】本题考查待定系数法求二次函数的解析式,是基础考点,难度较易
8、,掌握相关知识是解题关键2、C【解析】【分析】根据一次函数和二次函数的图象和性质,分别判断a,b的符号,利用排除法即可解答【详解】解:A、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;B、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;C、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,符合题意;D、由一次函数图象可知,a0,b=0,由二次函数图象可知,a0,b0,不符合题意;故选:C【考点】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质3、B【解析】【分析】根据二次函数的性质对各选项分
9、析判断后利用排除法求解【详解】解:由二次函数可知对称轴是直线,故选项A错误,不符合题意;由二次函数可知开口向上,当时有最小值,故选项B正确,符合题意;由二次函数可知顶点坐标为(3,-5),故选项C错误,不符合题意;由二次函数可知顶点坐标为(3,-5),对称轴是直线,当x3时,y随x的增大而减小,故选项D错误,不符合题意;故选:B【考点】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性4、B【解析】【分析】根据二次函数的定义判断即可【详解】A、y4x+5是一次函数,故选项A不合题意;B、yx(2x3)是二次函数,故选项B符合题意;C、当a0时,yax2+bx+c
10、不是二次函数,故选项C不合题意;D、不是二次函数,故选项D不合题意故选:B【考点】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键5、B【解析】【分析】根据二次函数图象的性质对各项进行分析判断即可【详解】解:抛物线解析式可知,A、由于,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为,结合其开口方向向下,可知当时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意故选:B【考点】本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、
11、顶点坐标以及二次函数图象的增减性解题6、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴【详解】解:二次函数的图象的对称轴是故选A【考点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键7、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值8、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-958291.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
