广西专用2022年高考数学一轮复习 考点规范练31 等比数列及其前n项和(含解析)新人教A版(文)..docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广西专用2022年高考数学一轮复习 考点规范练31 等比数列及其前n项和含解析新人教A版文. 广西 专用 2022 年高 数学 一轮 复习 考点 规范 31 等比数列 及其 解析 新人
- 资源描述:
-
1、考点规范练31等比数列及其前n项和基础巩固1.(2020四川德阳模拟)已知等比数列an中,a5=3,a4a7=45,则a7-a9a6-a7的值为()A.30B.25C.15D.10答案:A解析:设等比数列an的公比为q.已知a5=3,a4a7=45,则a4a7=a4a6q=a52q=45,解得q=5,所以a7-a9a6-a7=q-q31-q=q(1+q)=30.2.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起 ,每一个单音的频率与它的前一个单音的频率的比都等于12
2、2.若第一个单音的频率为f,则第八个单音的频率为()A.32fB.322fC.1225fD.1227f答案:D解析:由题意知,这十三个单音的频率构成首项为f,公比为122的等比数列,则第八个单音的频率为(122)7f=1227f.3.已知正项等比数列an满足a3=1,a5与32a4的等差中项为12,则a1的值为()A.4B.2C.12D.14答案:A解析:设公比为q.由题意,得a5+32a4=1,a3q2+32a3q=1,q2+32q=1,即2q2+3q-2=0,q=12或q=-2(舍去),故a1=a3q2=4.4.已知an为等比数列,a4+a7=2,a5a6=-8,则a1+a10=()A.7
3、B.5C.-5D.-7答案:D解析:an为等比数列,a5a6=a4a7=-8.联立a4+a7=2,a4a7=-8,可解得a4=4,a7=-2或a4=-2,a7=4,当a4=4,a7=-2时,q3=-12,故a1+a10=a4q3+a7q3=-7;当a4=-2,a7=4时,q3=-2,故a1+a10=a4q3+a7q3=-7.综上可知,a1+a10=-7.5.等差数列an的公差为2,若a2,a4,a8成等比数列,则an的前n项和Sn=()A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)2答案:A解析:a2,a4,a8成等比数列,a42=a2a8,即(a1+6)2=(a1+2)(
4、a1+14),解得a1=2.Sn=na1+n(n-1)2d=2n+n2-n=n2+n=n(n+1).故选A.6.已知数列an为等比数列,首项a1=2,数列bn满足bn=log2an,且b2+b3+b4=9,则a5=()A.8B.16C.32D.64答案:C解析:由题意知bn为等差数列,因为b2+b3+b4=9,所以b3=3,因为b1=1,所以公差d=1,则bn=n,即n=log2an,故an=2n,于是a5=25=32.7.记Sn为等比数列an的前n项和.若a1=1,S3=34,则S4=.答案:58解析:设等比数列an的公比为q.S3=a1+a1q+a1q2=1+q+q2=34,即q2+q+1
5、4=0.解得q=-12.故S4=a1(1-q4)1-q=1-1241+12=58.8.设数列an的前n项和为Sn,若S2=4,an+1=2Sn+1,nN*,则a1=,S5=.答案:1121解析:由题意,可得a1+a2=4,a2=2a1+1,所以a1=1,a2=3.再由an+1=2Sn+1,an=2Sn-1+1(n2),得an+1-an=2an,即an+1=3an(n2).又因为a2=3a1,所以数列an是以1为首项,3为公比的等比数列.所以S5=1-351-3=121.9.(2020广西南宁二模)已知在数列an中,a1=2,且对于任意正整数m,n都有am+n=aman,则数列an的通项公式是.
6、答案:an=2n解析:在数列an中,a1=2,且对于任意正整数m,n都有am+n=aman,令m=1,得an+1=2an,则an是首项和公比均为2的等比数列,从而an=2n.10.已知数列an满足a1=1,nan+1=2(n+1)an.设bn=ann.(1)求b1,b2,b3;(2)判断数列bn是否为等比数列,并说明理由;(3)求an的通项公式.解:(1)由条件可得an+1=2(n+1)nan.将n=1代入得,a2=4a1,而a1=1,所以a2=4.将n=2代入得,a3=3a2,所以a3=12.从而b1=1,b2=2,b3=4.(2)bn是首项为1,公比为2的等比数列.由条件可得an+1n+1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-246570.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
