广西专用2022年高考数学一轮复习 考点规范练34 二元一次不等式(组)与简单的线性规划问题(含解析)新人教A版(理)..docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广西专用2022年高考数学一轮复习 考点规范练34 二元一次不等式组与简单的线性规划问题含解析新人教A版理. 广西 专用 2022 年高 数学 一轮 复习 考点 规范 34 二元 一次 不等式
- 资源描述:
-
1、考点规范练34二元一次不等式(组)与简单的线性规划问题基础巩固1.若点(1,b)在两条平行直线6x-8y+1=0和3x-4y+5=0 之间,则b应取的整数值为()A.2B.1C.3D.0答案:B解析:由题意知(6-8b+1)(3-4b+5)0,即b-78(b-2)0,解得78b0,则当直线y=-ax+z过点O(0,0)时,z取得最小值0,不合题意;若a0,则当直线y=-ax+z过点C(4,0)时,z取得最小值为4a,由4a=-8,得a=-2.11.在平面直角坐标系xOy中,M为不等式组2x+3y-60,x+y-20,y0所表示的区域上一动点,则|OM|的最小值是.答案:2解析:由约束条件画出可
2、行域,如图(阴影部分)所示.由图可知OM的最小值即为点O到直线x+y-2=0的距离,即dmin=|-2|2=2.12.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1 kg、B原料2 kg;生产乙产品1桶需耗A原料2 kg,B原料1 kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12 kg.试通过合理安排生产计划,求从每天生产的甲、乙两种产品中,公司共可获得的最大利润.解:设每天分别生产甲产品x桶,乙产品y桶,相应的利润为z元,则x+2y12,2x+y12,x0,y0,z=300x+400y,在坐标平面内画
3、出该不等式组表示的平面区域及直线300x+400y=0,平移该直线,当平移到经过该平面区域内的点A(4,4)时,相应直线在y轴上的截距达到最大,此时z=300x+400y取得最大值,最大值是z=3004+4004=2800,即该公司可获得的最大利润是2800元.能力提升13.(2020浙江衢州模拟)若实数x,y满足约束条件x-y+10,2x+3y6,y+10,则z=2|x|-y的最小值是()A.-25B.5C.-1D.-2答案:C解析:作出实数x,y满足约束条件x-y+10,2x+3y6,y+10所表示的平面区域,即可行域,如图所示.由已知可得点A,B,C,D的坐标分别为A92,-1,B35,
4、85,C(-2,-1),D(0,1).若x0,则z=2|x|-y可化为y=2x-z,由图可知,当直线y=2x-z过点D时,直线在y轴上的截距最大,此时z取得最小值-1.若x0,则z=2|x|-y可化为y=-2x-z,由图可知,当直线y=-2x-z过点D时,直线在y轴上的截距最大,此时z取得最小值-1.故选C.14.(2020湖南长沙模拟)若实数x,y满足x-y+10,x+y-30,x0,且2x+y-3k(x-2)恒成立,则k的取值范围是()A.(-,-1B.(-,1C.-1,+)D.1,+)答案:D解析:作出不等式组x-y+10,x+y-30,x0所表示的平面区域,即可行域,它为ABC及其内部
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-246580.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
