2022届高考数学基础总复习提升之专题突破详解 专题09 三角化简技巧(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考数学基础总复习提升之专题突破详解 专题09 三角化简技巧含解析 2022 高考 数学 基础 复习 提升 专题 突破 详解 09 角化 技巧 解析
- 资源描述:
-
1、专题09 三角化简技巧一陷阱类型1.用已知角表示未知角2.降幂公式的灵活应用3.“1”的变通4.特殊角的替换作用5.角的一致性6.辅助角公式的灵活应用7.正切公式的灵活应用8.正切变两弦9. 与的关系二防陷阱演练1.用已知角表示未知角例1已知, ,则 ( )A. B. C. D. 【答案】A【解析】,.选A.【防陷阱措施】用题目所给的已知角表示未知角能够简化解题步骤,节约解题时间练习1设,若,则( )A. B. C. D. 【答案】D练习2若 ,则tan2=()A. 3 B. 3 C. D. 【答案】D【解析】因为,所以 ,则 ;故选D.练习3. 若是锐角,且满足,则的值为( )A. B. C
2、. D. 【答案】B【解析】是锐角,且,所以也为锐角,所以.故选B.点睛:在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的方法为配凑角:即将要求的式子通过配凑,得到与已知角的关系,进而用两角和差的公式展开求值即可,再利用公式求解前,需将每一个三角函数值确定下来,尤其是要利用角的终边确定好正负.练习4. 已知, ,则=( )A. B. C. D. 【答案】D练习5. 已知, ,且, ,则的值为_【答案】【解析】,22.0,0,20,22,cos(2).又0且sin ,cos,cos 2cos(2)cos(2)cossin(2)sin .又cos 212sin2,sin2.又,
3、sin .2.降幂公式的灵活应用例2. 已知是第一象限的角,若,则等于( )A. B. C. D. 【答案】C【防陷阱措施】当幂比较高时,注意先使用平方关系把幂降下来练习13.“1”的变通例3若=,则=A. B. C. 1 D. 【答案】A【解析】=.故选A练习1已知.(1)求的值;(2)求的值.【答案】(1)-3(2)1【解析】试题分析:(1)利用两角和的正切函数化简求解即可(2)利用二倍角公式以及同角三角函数基本关系式化简求解即可4.特殊角的替换作用例4. 等于( )A. B. C. D. 【答案】C【解析】,故选C。练习1A. B. -1 C. D. 1【答案】D【解析】,故选:D.5.
4、角的一致性例5. 的值是( )A. B. C. D. 【答案】D练习1=_【答案】-1【解析】因为,所以.所以原式为-1.答案为-1.练习2_.【答案】【解析】故答案为练习3_【答案】【解析】 由,及,可得,所以.练习4_【答案】【解析】,.故答案为: 练习5. 求值: _【答案】4【解析】 故答案为4练习6_【答案】点睛:解答本题的关键是借助题设中角度的特征,先将切化弦,再运用三角变换公式及二倍角的正弦余弦公式进行运算,进而达到化简的目的。练习7化简的值为_【答案】【解析】原式 ,故答案为.练习8求的值.【答案】2.【解析】试题分析:利用题意结合所给三角函数式的特征构造两角和差正余弦公式计算
5、可得三角函数式的值为2.试题解析:原式 6.辅助角公式的灵活应用例6. 已知,则的最大值为( )A. 1 B. C. 2 D. 【答案】C7.正切公式的灵活应用例7. A. B. C. D. 【答案】D【解析】 所以 所以原式等于故选D【防陷阱措施】巧妙应用两角和差的正切公式,找到和与乘积的关系练习1在数1和2之间插入个正数,使得这个数构成递增等比数列,将这个数的乘积记为,令, , _【答案】【解析】设在数和之间插入个正数,使得这个数构成递增等比数列为,则,即为此等比数列的公比, , ,由,又 , , , ,故答案为.练习2_【答案】【解析】, ,,故答案为.练习3_【答案】8【解析】注意到可
6、化为.项证明一般结论如下: ,由于,故原式.8.正切变两弦例8的值为( )A. B. C. 1 D. 2【答案】C【解析】 ,故选C.【防陷阱措施】本题的解题关键是:1.切化弦;2.辅助角公式;3.利用二倍角公式和诱导公式求解.练习1( )A. B. C. D. 1【答案】D【解析】故选D.9. 与的关系例9. 已知,则的值为( )A. B. C. D.【答案】B.【解析】练习1已知, ,则_【答案】【解析】由题意可得: , ,因为所以舍去,所以,所以, ,故答案为.三高考真题演练1.【2016高考新课标2理数】若,则( )(A) (B) (C) (D)【答案】D【解析】考点:三角恒等变换.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-247616.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
