河北省邯郸市2021届高三数学下学期5月第三次模拟考试试题.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 邯郸市 2021 届高三 数学 下学 第三次 模拟考试 试题
- 资源描述:
-
1、河北省邯郸市2021届高三数学下学期5月第三次模拟考试试题考生注意:1.本试卷分选择题和非选择题两部分。满分150分,考试时间120分钟。2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。3.考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。4.本卷命题范围:新高考范围。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集为U,集合A
2、,B为U的子集,若,则A. B. C. BD. A2.在平面直角坐标系xOy中,角的顶点为O,始边为x轴的非负半轴,若点是角终边上的一点,则等于A. B. C. D. 3.已知双曲线的一条渐近线方程为,分别是双曲线C的左、右焦点,P为双曲线C上一点,若,则A. 1B. 1或9C. 3或9D. 94.已知复数(i为虚数单位,),若,从M中任取一个元素,其模为1的概率为A. B. C. D. 5.生物体的生长都经过发生、发展、成熟三个阶段,每个阶段的生长速度各不相同,通常在发生阶段生长速度较为缓慢、在发展阶段速度加快、在成熟阶段速度又趋于缓慢,按照上述三个阶段生长得到的变化曲线称为生长曲线.美国生
3、物学家和人口统计学家雷蒙德皮尔提出一种能较好地描述生物生长规律的生长曲线,称为“皮尔曲线”,常用“皮尔曲线”的函数解析式为.一种刚栽种的果树的生长曲线的函数解析式为,x表示果树生长的年数,表示生长第x年果树的高度,若刚栽种时该果树高为1m,经过一年,该果树高为2.5m,则A.2.5 mB.2 mC.1.5 mD.1 m6.如图,圆台的上底面半径为,下底面半径为,母线长,过OA的中点B作OA的垂线交圆O于点C,则异面直线与所成角的大小为A. B. C. D. 7.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的详解九章算法一书中出现,欧洲数学家帕斯卡在1654年
4、才发现这一规律,比杨辉要晚近四百年.在由二项式系数所构成的“杨辉三角”中(如下图),记第2行的第3个数字为a1、第3行的第3个数字为a2,第n()行的第3个数字为,则A.220B.186C.120D.968.已知点P在直线上,过点P作圆的两条切线,切点分别为A,B,则点到直线AB距离的最大值为A. B. C. 2D. 二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.在管理学研究中,有一种衡量个体领导力的模型,称为“五力模型”,即一个人的领导力由五种能力影响力、控制力、决断力、前瞻力和感召力构成.右
5、图是某企业对两位领导人领导力的测评图,其中每项能力分为三个等级,“一般”记为4分、“较强”记为5分、“很强”记为6分,把分值称为能力指标,则下列判断正确的是A.甲、乙的五项能力指标的均值相同B.甲、乙的五项能力指标的方差相同C.如果从控制力、决断力、前瞻力考虑,乙的领导力高于甲的领导力D.如果从影响力、控制力、感召力考虑,甲的领导力高于乙的领导力10.已知两个不为零的实数x,y满足,则下列结论正确的是A. B. C. D. 11.英国数学家牛顿在17世纪给出了一种求方程近似根的方法牛顿迭代平法,做法如下:如图,设r是的根,选取作为r的初始近似值,过点作曲线的切线,则l与x轴的交点的横坐标,称是
6、r的一次近似值;过点作曲线的切线,则该切线与x轴的交点的横坐标为x2,称x2是r的二次近似值;重复以上过程,得r的近似值序列,其中,称是r的n+1次近似值,这种求方程近似解的方法称为牛顿迭代法.若使用该方法求方程的近似解,则A.若取初始近似值为1,则该方程解的二次近似值为B.若取初始近似值为2,则该方程解的二次近似值为C. D. 12.已知函数,则A.对任意正奇数为奇函数B.当时,的单调递增区间是C.当时,在上的最小值为D.对任意正整数的图象都关于直线对称三、填空题:本题共4小题,每小题5分,共20分。13.若向量满足,则向量的夹角为 .14.请写出一个函数 ,使之同时具有如下性质:,.15.
7、已知椭圆C的左、右焦点分别为,直线AB过与椭圆交于A,B两点,当为正三角形时,该椭圆的离心率为 .16.在上、下底面均为正方形的四棱台中,已知,则该四棱台的表面积为 ;该四棱台外接球的体积为 .(本小题第一空2分,第二空3分)四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步驟。17.(本小题满分10分)在等比数列中,公比,其前n项和为,且, .(1)求数列的通项公式;(2)设,且数列满足,求数列的通项公式.从,是与2的等差中项,这三个条件中任选一个,补充到上面问题中的横线上,并作答.注:如果选择多个条件分别解答,按照第一个解答计分.18.(本小题满分12分)在中,角A,
8、B,C的对边分别为,点D在边AC上,且,.(1)求角B的大小;(2)求面积的最大值.19.(本小题满分12分)在三棱柱中,底面ABC,为正三角形,E是的中点.(1)求证:平面平面;(2)求二面角的余弦值.20.(本小题满分12分)已知抛物线的焦点为F,准线为l.设过点F且不与x轴平行的直线m与抛物线C交于A,B两点,线段AB的中点为M,过M作直线垂直于l,垂足为N,直线MN与抛物线C交于点P.(1)求证:点P是线段MN的中点.(2)若抛物线C在点P处的切线与y轴交于点Q,问是否存在直线m,使得四边形MPQF是有一个内角为的菱形?若存在,请求出直线m的方程;若不存在,请说明理由.21.(本小题满
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
