河南省信阳市罗山高级中学2020届高三数学上学期第10周周测试题 理.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南省信阳市罗山高级中学2020届高三数学上学期第10周周测试题 河南省 信阳市 罗山 高级中学 2020 届高三 数学 上学 10 周周 测试
- 资源描述:
-
1、河南省信阳市罗山高级中学2020届高三数学上学期第10周周测试题 理(120分钟 150分)一、选择题(本大题共12小题,共60分)1. 已知集合,则( )A. B. C. D. 2. 若复数z满足z+zi=3+2i,则在复平面内z对应的点位于()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 下列说法:对于独立性检验,的值越大,说明两事件相关程度越大;以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和;某中学有高一学生 400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则高一学生被抽到的概
2、率最大;通过回归直线及回归系数,可以精确反映变量的取值和变化趋势. 其中正确说法的个数是 ( )A. 1B. 2C. 3D. 44. 已知展开式中的系数和为32,则该展开式中的常数项为( )A. B. 121C. 80D. 815. 在ABC中,BC=7,AC=6,cosC=若动点P满足=(1-)+,(R),则点P的轨迹与直线BC,AC所围成的封闭区域的面积为()A. 5B. 10C. D. 6. 古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB分为两线段AC,CB,使得其中较长的一段AC是全长AB与另一段CB的比例中项,即满足=0.618后人把这个数称为
3、黄金分割数,把点C称为线段AB的黄金分割点.在ABC中,若点P,Q为线段BC的两个黄金分割点,在ABC内任取一点M,则点M落在APQ内的概率为()A. B. C. D. 7. 如图,扇形的半径为1,圆心角,点P在弧BC上运动,则的最大值是( )A. 1B. C. 2D. 8. 将函数y2sinsin的图象向左平移(0)个单位长度,所得图象对应的函数恰为奇函数,则的最小值为( )A. B. C. D. 9. 某几何体的三视图如图所示,正视图为直角三角形,侧视图为等边三角形,俯视图为等腰直角三角形,则其外接球的表面积为()A. B. C. D. 10已知F为双曲线C:(a0,b0)的右焦点,圆O:
4、x2y2a2b2与C在第一象限、第三象限的交点分别为M,N,若MNF的面积为ab,则双曲线C的离心率为A B C2 D10. 已知函数f(x)xalnx1,(a为实数,e为自然对数的底数),设a0,若对任意的x1,x23,4(x1x2),|f(x2)f(x1)|恒成立,则实数a的最小值为()A. B. C. D. 11. 定义在R上的函数,如果存在函数,使得对一切实数都成立,则称为函数的一个承托函数现有如下命题:对给定的函数,其承托函数可能不存在,也可能有无数个;为函数的一个承托函数;定义域和值域都是R的函数不存在承托函数其中正确命题的序号是( )A. B. C. D. 二、填空题(本大题共4
5、小题,共20分)12. ABC三个内角A、B、C所对边分别为a、b、c,并且,则SABC_13. 已知双曲线的两条渐近线与抛物线y2=2px(p0)分别交于O、A、B三点,O为坐标原点若双曲线的离心率为2,AOB的面积为,则=_14. 若存在两个正实数,使得等式成立,其中为自然对数的底数,则实数的取值范围是_ _15. 已知,若 ,且方程有5个不同根,则的取值范围为_三、解答题(本大题共6小题,共70分)16. 已知等差数列的前项中,奇数项的和为56,偶数项的和为48,且(其中)(1)求数列的通项公式;(2)若是一个等比数列,其中,求数列的通项公式;(3)若存在实数,使得对任意恒成立,求的最小
6、值17. 如图,在三棱台ABC-DEF中,平面BCFE平面ABC,ACB=90,BE=EF=FC=1,BC=2,AC=3(1)求证:BF平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值18. 已知圆C:(x+1)2+y2=8,点A(1,0),P是圆C上任意一点,线段AP的垂直平分线交CP于点Q,当点P在圆上运动时,点Q的轨迹为曲线E(1)求曲线E的方程;(2)若直线l:y=kx+m与曲线E相交于M,N两点,O为坐标原点,求MON面积的最大值19. 设kR,函数f(x)=lnx-kx(1)若k=2,求曲线y=f(x)在x=1处的切线方程;(2)若f(x)无零点,求实数k的取值范围;(3
7、)若f(x)有两个相异零点x1,x2,求证:lnx1+lnx2221.水污染现状与工业废水排放密切相关,某工厂深入贯彻科学发展观,努力提高污水收集处理水平,其污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为p(0p1)经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放 某厂现有4个标准水量的A级水池,分别取样、检测多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验混合样本中只要有样本不达标,则混合样本的化验结果必不达标若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接
8、排放 现有以下四种方案: 方案一:逐个化验; 方案二:平均分成两组化验; 方案三:三个样本混在一起化验,剩下的一个单独化验; 方案四:四个样本混在一起化验 化验次数的期望值越小,则方案越“优” ()若p,求2个A级水样本混合化验结果不达标的概率; ()()若p,现有4个A级水样本需要化验,请问:方案一、二、四中哪个最“优”? ()若“方案三”比“方案四”更“优”,求p的取值范围22.选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为,(为参数,且0,),曲线C2的极坐标方程为=-2sin(1)求C1
9、的极坐标方程与C2的直角坐标方程;(2)若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|PN|的取值范围23.选修4-5:不等式选讲已知f(x)=|x-a|,aR(1)当a=1时,求不等式f(x)+|2x-5|6的解集;(2)若函数g(x)=f(x)-|x-3|的值域为A,且-1,2A,求a的取值范围数学答案一、选择题1.B解:由,得,即x(x-2)0,解得x2或x2或x0,取k=1,则的最小值为,9.D解:几何体为三棱锥,作出直观图如图所示,由三视图可知定点A在底面的射影为CD的中点F,底面BCD为到腰直角三角形,BDCD,设外接球的球心O,E,M分别是BCD,ACD的外心,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
二年级语文上册 第一单元 口语交际:有趣的动物教学课件 新人教版.pptx
