2023年高考数学一轮复习 高考解答题专项五 第2课时 圆锥曲线中的定点(或定值)问题(含解析)北师大版 文.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年高考数学一轮复习 高考解答题专项五 第2课时 圆锥曲线中的定点或定值问题含解析北师大版 2023 年高 数学 一轮 复习 高考 解答 专项 课时 圆锥曲线 中的 定点 问题 解析 北师大
- 资源描述:
-
1、第2课时圆锥曲线中的定点(或定值)问题1.(2020山东泰安三模,21)已知椭圆x2a2+y2b2=1(ab0)的右顶点为A,上顶点为B,O为坐标原点,点O到直线AB的距离为255,OAB的面积为1.(1)求椭圆的标准方程;(2)直线l与椭圆交于C,D两点,若直线lAB,设直线AC,BD的斜率分别为k1,k2,证明:k1k2为定值.解:(1)直线AB的方程为xa+yb=1,即bx+ay-ab=0,则aba2+b2=255.因为三角形OAB的面积为1,所以12ab=1,即ab=2,解得a=2,b=1,所以椭圆的标准方程为x24+y2=1.(2)直线AB的斜率为-12,设直线l的方程为y=-12x
2、+t,C(x1,y1),D(x2,y2),把方程y=-12x+t与x24+y2=1联立,消去x,整理得2y2-2ty+t2-1=0,=(-2t)2-42(t2-1)=8-4t20,即t2b0)的离心率为12,并且经过点P(0,3).(1)求椭圆C的方程;(2)设过点P的直线与x轴交于N点,与椭圆的另一个交点为B,点B关于x轴的对称点为B,直线PB交x轴于M,求证:|OM|ON|为定值.(1)解由已知ca=12,3b2=1,a2=b2+c2,解得b2=3,a2=4,所以椭圆C:x24+y23=1.(2)证明证法1由已知直线PB的斜率存在,以下给出证明:由题意,设直线PB的方程为y=kx+3(k0
3、),P(0,3),B(x1,y1),则B(x1,-y1).由3x2+4y2=12,y=kx+3,得(3+4k2)x2+83kx=0,x1=-83k3+4k2,y1=-83k23+4k2+3,所以B-83k3+4k2,-83k23+4k2+3,即B-83k3+4k2,-43k2+333+4k2,B-83k3+4k2,43k2-333+4k2,直线PB的方程为y-43k2-333+4k2=34kx-83k3+4k2,令y=0,得x=(-43k2-33)4k3(3+4k2),所以M(-43k2-33)4k3(3+4k2),0,令y=0,由y=kx+3得x=-3k,所以N-3k,0,所以|OM|ON|
4、=(-43k2-33)4k3(3+4k2)-3k=4.证法2设B(x0,y0),B(x0,-y0),则x024+y023=1,则直线PB的方程为y-3=3-y0-x0(x-0),令y=0,x=3x03-y0,所以N3x03-y0,0.同理M3x03+y0,0,所以|OM|ON|=3x03+y03x03-y0=3x023-y02,因为x024+y023=1,所以3x02+4y02=12,所以|OM|ON|=3x023-y02=12-4y023-y02=4.4.(2019全国,文21)已知点A,B关于坐标原点O对称,|AB|=4,M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-268079.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
