2023新教材高考数学二轮专题复习 强化训练24 函数与导数——大题备考.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023新教材高考数学二轮专题复习 强化训练24 函数与导数大题备考 2023 新教材 高考 数学 二轮 专题 复习 强化 训练 24 函数 导数 备考
- 资源描述:
-
1、强化训练24函数与导数大题备考第一次作业12022全国乙卷已知函数f(x)ax(a1)ln x.(1)当a0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围22022全国甲卷已知函数f(x)ln xxa.(1)若f(x)0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x20时,f(x)ln (n1).42021新高考卷已知函数f(x)x(1ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln aa ln bab,证明:20),则f(x).当x(0,1)时,f(x)0;当x(1,)时,f(x)0时,xln x0,所以方程a
2、在(0,)上恰有一个解令g(x)(x0),则g(x).令h(x)x1(x1)ln x(x0),则h(x)1ln xln x.由(1)知,h(x)1,所以h(x)在(0,)上单调递减又h(1)0,所以当x(0,1时,h(x)0;当x(1,)时,h(x)0.则当x(0,1时,g(x)0;当x(1,)时,g(x)0.所以g(x)在(0,)上单调递减又当x0时,g(x),当x时,g(x)0,所以a(0,).2解析:(1)由题意可知函数f(x)的定义域为(0,),f(x)1.令f(x)0,解得x1.当x(0,1)时,f(x)0;当x(1,)时,f(x)0.所以f(x)在(0,1)上单调递减,在(1,)上
3、单调递增,所以f(x)minf(1)e1a.若f(x)0,则f(x)mine1a0,解得ae1.故a的取值范围为(,e1.(2)证明:由(1)可知,要使f(x)有两个零点,则f(x)minf(1)e1a0,即a1e.假设0x11x2,要证明x1x21,即需证明1x2.又因为f(x)在x(1,)上单调递增,所以要证明1x2,则需证明f(x2)f,即f(x1)f.令F(x)f(x)f,0x1,则F(x)f(x)f.因为ex在x(0,1)上单调递增,所以exe,所以当x(0,1)时,exxe1.又函数yxe在(0,1)上单调递减,所以xee,所以xe1e1,所以exxxe1e1e10,所以当x(0,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
(长春版)四年级语文上册《平分生命 》(15张PPT).ppt
