2023届高三数学 寒假二轮微专题45讲 26.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高三数学 寒假二轮微专题45讲 26 2023 届高三 数学 寒假 二轮 专题 45
- 资源描述:
-
1、椭圆的焦点三角形初探一学习目标:掌握椭圆的焦点三角形及常见结论.二概念梳理: 焦点三角形主要结论:椭圆定义可知:中,(1). .(2). 焦点三角形的周长为(3).(4). 焦点三角形的面积为:.设、是椭圆的左、右焦点,P是椭圆C上的一个动点,则当P为短轴端点时,最大.S|PF1|PF2|sin c|y0|,当|y0|b,即点P为短轴端点时,S取得最大值,最大值为bc;(5). 假设焦点的内切圆半径为,则.(6).焦半径公式:设是椭圆上一点,那么,进一步,有推导:根据两点间距离公式:,由于代入两点间距离公式可得,整理化简即可得. 同理可证得.(7).设是椭圆上一点,那么,由于,故我们有(8)若
2、约定椭圆,分别为左、右焦点;顶点在第一象限;,则对于椭圆,离心率(9) 若,对椭圆有,若,对于椭圆,有, 若,对椭圆,有.(10) 对椭圆焦点三角形的内心的轨迹方程为.三典例分析例1已知,是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为,则()A9B3C4D8解析:由焦点三角形面积公式得,故选:B例2已知椭圆,其左右焦点分别为,离心率为,点P为该椭圆上一点,且满足,若的内切圆的面积为,则该椭圆的方程为()ABCD解析:所以,而,所以可得,解得,由,得,所以该椭圆的方程为故选:A例3已知是椭圆E的两个焦点,P是E上的一点,若,且,则E的离心率为()ABCD解析:又,所以,即,故E的离心率为.故
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
