2023届高考数学一轮复习作业 立体几何中的最值、翻折、探索性问题 新人教B版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高考数学一轮复习作业 立体几何中的最值、翻折、探索性问题 新人教B版 2023 高考 数学 一轮 复习 作业 立体几何 中的 探索 问题 新人
- 资源描述:
-
1、立体几何中的最值、翻折、探索性问题1(2018全国卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC;(2)当三棱锥MABC体积最大时,求面MAB与面MCD所成二面角的正弦值解(1)证明:由题设知,平面CMD平面ABCD,交线为CD因为BCCD,BC平面ABCD,所以BC平面CMD,所以BCDM因为M为上异于C,D的点,且DC为直径,所以DMCM又BCCMC,所以DM平面BMC而DM平面AMD,故平面AMD平面BMC(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz当三棱锥MABC体积最大时,M为的
2、中点由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),(2,1,1),(0,2,0),(2,0,0)设n(x,y,z)是平面MAB的法向量,则即可取n(1,0,2)是平面MCD的法向量,因此cosn,sinn,所以面MAB与面MCD所成二面角的正弦值是2如图,已知三棱锥PABC,其展开图如图所示,其中四边形ABCD是边长等于的正方形,ABE和BCF均为正三角形,在三棱锥PABC中:图图(1)证明:平面PAC平面ABC;(2)若M是PA的中点,求二面角PBCM的余弦值解(1)证明:如图,设AC的中点为O,连接BO,PO由题意,得PAPBPC,PO1
3、,AOBOCO1因为在PAC中,PAPC,O为AC的中点,所以POAC,因为在POB中,PO1,OB1,PB,所以PO2OB2PB2,所以POOB因为ACOBO,AC,OB平面ABC,所以PO平面ABC,因为PO平面PAC,所以平面PAC平面ABC(2)由(1)可知POOB,POAC,OBAC,以OC,OB,OP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0),C(1,0,0),B(0,1,0),A(1,0,0),P(0,0,1),M,所以(1,1,0),(1,0,1),设平面MBC的法向量为m(x1,y1,z1),由得令x11,得y11,z13,即m(1,1,3)为平面M
4、BC的一个法向量设平面PBC的法向量为n(x2,y2,z2),由得令x21,得y21,z21,即n(1,1,1)为平面PBC的一个法向量cosn,m由图可知,二面角PBCM为锐角,故其余弦值为3如图所示,在梯形ABCD中,ABCD,BCD120,四边形ACFE为矩形,且CF平面ABCD,ADCDBCCF(1)求证:EF平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值解(1)证明:设ADCDBC1,ABCD,BCD120,AB2,AC2AB2BC22ABBCcos 603,AB2AC2BC2,则BCACCF平面ABCD,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-296821.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
二年级上册语文课件-2.我是什么 ∣人教(部编版)(2016) (共18张PPT).ppt
