《教材分析与导入设计》2014年高中数学必修5(人教A版)第三章 《新课教学过程1》3.2 一元二次不等式及其解法.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教材分析与导入设计 新课教学过程1
- 资源描述:
-
1、高考资源网() 您身边的高考专家3.2一元二次不等式及其解法第1课时教学过程推进新课师 因此这个问题实际就是解不等式:x2-5x0的问题.这样的不等式就叫做一元二次不等式,它的解法是我们下面要学习讨论的重点.什么叫做一元二次不等式?含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c0或ax2+bx+c0(a0).例如2x2-3x-20,3x2-6x-2,-2x2+30等都是一元二次不等式.那么如何求解呢?师 在初中,我们已经学习过一元一次方程和一元一次不等式的解法,以及一次函数的有关知识,那么一元一次方程、一元一次不等式以及一次函数三者之间有什么
2、关系呢?思考:对一次函数y=2x-7,当x为何值时,y=0?当x为何值时,y0?当x为何值时,y0?它的对应值表与图象如下:x22.533.544.55y-3-2-10123由对应值表与图象(如上图)可知:当x=3.5时,y=0,即2x-7=0;当x3.5时,y0,即2x-70;当x3.5时,y0,即2x-70.师 一般地,设直线y=ax+b与x轴的交点是(x0,0),则有如下结果:(1)一元一次方程ax+b=0的解是x0;(2)当a0时,一元一次不等式ax+b0的解集是x|xx0;一元一次不等式ax+b0的解集是x|xx0.当a0时,一元一次不等式ax+b0的解集是x|xx0;一元一次不等式
3、ax+b0的解集是x|xx0.师 在解决上述问题的基础上分析,一次函数、一元一次方程、一元一次不等式之间的关系.能通过观察一次函数的图象求得一元一次不等式的解集吗?生 函数图象与x轴的交点横坐标为方程的根,不等式的解集为函数图象落在x轴上方(下方)部分对应的横坐标.a0a0一次函数y=ax+b(a0)的图象一元一次方程ax+b=0的解集x|x=x|x=一元一次不等式ax+b0的解集x|xx|x一元一次不等式ax+b0的解集x|xx|x师 在这里我们发现一元一次方程、一元一次不等式与一次函数三者之间有着密切的联系.利用这种联系(集中反映在相应一次函数的图象上)我们可以快速准确地求出一元一次不等式
4、的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?在初中学习二次函数时,我们曾解决过这样的问题:对二次函数y=x2-5x,当x为何值时,y=0?当x为何值时,y0?当x为何值时,y0?当时我们又是怎样解决的呢?生 当时我们是通过作出函数的图象,找出图象与x轴的交点,通过观察来解决的.二次函数y=x2-5x的对应值表与图象如下:x-10123456y60-4-6-6-406由对应值表与图象(如上图)可知:当x=0或x=5时,y=0,即x2-5x=0;当0x5时,y0,即x2-5x0;当x0或x5时,y0,即x2-5x0.这就是说,若抛物线y=x 2-5
5、x与x轴的交点是(0,0)与(5,0),则一元二次方程x2-5x=0的解就是x1=0,x2=5.一元二次不等式x2-5x0的解集是x|0x5;一元二次不等式x2-5x0的解集是x|x0或x5.教师精讲由一元二次不等式的一般形式知,任何一个一元二次不等式,最后都可以化为ax2+bx+c0或ax2+bx+c0(a0)的形式,而且我们已经知道,一元二次不等式的解与其相应的一元二次方程的根及二次函数图象有关,即由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.如何讨论一元二次不等式的解集呢?我们知道,对于一元二次方程ax2+bx+c=0(a0),设其判别式为=b2-4ac
6、,它的解按照0,=0,0分为三种情况,相应地,抛物线y=ax2+bx+c(a0)与x轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式ax2+bx+c0或ax2+bx+c0(a0)的解集我们也分这三种情况进行讨论.(1)若0,此时抛物线y=ax 2+bx+c(a0)与x轴有两个交点图(1),即方程ax 2+bx+c=0(a0)有两个不相等的实根x1,x2(x1x2),则不等式ax2+bx+c0(a0)的解集是x|xx1,或xx2;不等式ax2+bx+c0(a0)的解集是x|x1xx2.(2)若=0,此时抛物线y=ax2+bx+c(a0)与x轴只有一个交点图(2),即方程ax2+
7、bx+c=0(a0)有两个相等的实根x1=x2=,则不等式ax2+bx+c0(a0)的解集是x|x;不等式ax2+bx+c0(a0)的解集是.(3)若0,此时抛物线y=ax2+bx+c(a0)与x轴没有交点图(3),即方程ax2+bx+c=0(a0)无实根,则不等式ax2+bx+c0(a0)的解集是R;不等式ax2+bx+c0(a0)的解集是.=b2-4ac0=00二次函数y=ax2+bx+c(a0)的图象ax2+bx+c=0的根x1=x2=ax2+bx+c0的解集x|xx1或xx2x|xRax2+bx+c0的解集x|x1xx2对于二次项系数是负数(即a0)的不等式,可以先把二次项系数化成正数
8、,再求解.知识拓展【例1】 解不等式2x 2-5x-30.生 解:因为0,2x2-5x-3=0的解是x1=-,x 2=3.所以不等式的解集是x|x,或x3.【例2】 解不等式-3x 2+15x12.生 解:整理化简得3x 2-15x+120.因为0,方程3x2-15x+12=0的解是x 1=1,x2=4,所以不等式的解集是x|1x4.【例3】 解不等式4x 2+4x+10.生 解:因为=0,方程4x 2+4x+1=0的解是x1=x 2=.所以不等式的解集是x|x.【例4】 解不等式-x 2+2x-30.生 解:整理化简,得x2-2x+30.因为0,方程x 2-2x+3=0无实数解,所以不等式的
9、解集是.师 由上述讨论及例题,可归纳出解一元二次不等式的程序吗?生 归纳如下:(1)将二次项系数化为“+”:y=ax 2+bx+c0(或0)(a0).(2)计算判别式,分析不等式的解的情况:0时,求根x1x2,=0时,求根x 1=x 2=x 0,0时,方程无解,(3)写出解集.师 说的很好.下面我们用一个程序框图把求解一元二次不等式的过程表示出来,请同学们将判断框和处理框中的空格填充完整.学生活动过程方法引导上述过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用与新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣与勇于探索的精神.课堂小结1.一元二次不等
10、式:含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c0或ax2+bx+c0(a0).2.求解一元二次不等式的步骤和解一元二次不等式的程序.布置作业1.完成第90页的练习.2.完成第90页习题3.2第1题.板书设计一元二次不等式的概念和一元二次不等式解法多媒体演示区 一元二次不等式概念一元二次不等式解题步骤 例题3.2一元二次不等式的解法第2课时教学过程推进新课师 因此这个问题实际就是解不等式x2+9x-7 1100的问题.因为0,方程x2+9x-7 110=0有两个实数根,即x1-88.94,x279.94.然后,画出二次函数y=x 2+9x-
11、7 110,由图象得不等式的解集为x|x-88.94或x79.94.在这个实际问题中x0,所以这辆汽车刹车前的车速至少为79.94 km/h.师 【例2】 一个车辆制造厂引进一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(辆)与创造的价值y(元)之间有如下的关系:y=-2x 2+220x.若这家工厂希望在一个星期内利用这条流水线创收6 000元以上,那么他在一星期内大约应该生产多少辆摩托车?生 设在一星期内大约应该生产x辆摩托车.根据题意,能得到-2x2+220x6 000.移项、整理得x2-110x+3 0000.教师精讲因为=1000,所以方程x2-110x+3 000=0有两个实
12、数根x1=50,x2=60,然后,画出二次函数y=x 2-110x+3 000,由图象得不等式的解集为x|50x60.因为只能取整数值,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51到59辆之间时,这家工厂能够获得6 000元以上的收益.知识拓展【例3】 解不等式(x-1)(x+4)0.思路一:利用前节的方法求解.思路二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,原不等式的解集是下面两个不等式组与的解集的并集,即 x|-4x1=x|-4x1.书写时可按下列格式:解:(x-1)(x+4)0或x或-4x1-4x1,原不等式的解集是x|-4x1.思路三:由于不
13、等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:求根:令(x-1)(x+4)=0,解得x(从小到大排列)分别为-4,1,这两根将x轴分为三部分:(-,-4),(-4,1),(1,+).分析这三部分中原不等式左边各因式的符号:(-,-4)(-4,1)(1,+)x+4-+x-1-+(x-1)(x+4)+-+由上表可知,原不等式的解集是x|-4x1.点评:此法叫区间法,解题步骤是:将不等式化为(x-x1)(x-x 2)(x-xn)0(0)的形式(各项x的符号化“+”),令(x-x 1)(x-x2)(x-x n)=0,求出各根,不妨称之为分界点,一个分
14、界点把(实数)数轴分成两部分,两个分界点把数轴分成三部分按各根把实数分成的几部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);计算各区间内各因式的符号,下面是乘积的符号;看下面积的符号写出不等式的解集(你会发现符号的规律吗).练习1:解不等式:(1)x 2-5x-60;(2)(x-1)(x+2)(x-3)0;(3)x(x-3)(2-x)(x+1)0.答案:(1)x|x2或x3;(2)x|-2x1或x3;(3)x|-1x0或2x3.教师书写示范:如第(2)题:解不等式(x-1)(x+2)(x-3)0.解:检查各因式中x的符号均正;求得相应方程的根为-2,1,3
15、;列表如下:(-,-2)(-2,1)(1,3)(3,+)x+2-+x-1-+x-3-+各因式积-+-+由上表可知,原不等式的解集为x|-2x1或x3.思路四:上面的区间法实际上是把看相应函数图象上使y0或y0的x的部分数值化列成表了,我们试想若能画出图象(此时我们只注意y值的正负不注意其他方面),那么它相对于x轴的位置应是什么呢?可把表上各部分函数值的正负情况用下图表示,由图即可写出不等式的解集.由此看出,如果不像上面那样列表,就用这种方法也可以求这个不等式的解.你能总结一下用这种方法解不等式的规律吗?将不等式化为(x-x1)(x-x2)(x-x n)0(0)的形式,并将各因式x的系数化“+”
16、;求根,并在数轴上表示出来;由右上方穿线,经过数轴上表示各根的点(为什么);若不等式(x的系数化“+”后)是“0”,则找“线”在x轴上方的区间;若不等式是“0”,则找“线”在x轴下方的区间.这种方法叫数轴标根法.练习2:用数轴标根法解上述练习1中不等式(1)(3).教师书写示范:如第(2)题:解不等式x(x-3)(2-x)(x+1)0.解:将原不等式化为x(x-3)(x-2)(x+1)0;求得相应方程的根为-1,0,2,3;在数轴上表示各根并穿线(自右上方开始),如右图:原不等式的解集为x|-1x0或2x3.合作探究师【例4】 解不等式:(x-2)2(x-3)3(x+1)0.解:检查各因式中x
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-299565.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
(新教材)2020-2021学年高中外研版(2019)英语必修第三册课件:UNIT 4 AMAZING ART .ppt
