江苏省如皋市第一中学2020-2021学年高一数学上学期学校调研测试试题4.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 如皋市 第一 中学 2020 2021 学年 数学 上学 学校 调研 测试 试题
- 资源描述:
-
1、江苏省如皋市第一中学2020-2021学年高一数学上学期学校调研测试试题4一、单选题1已知R为实数集,Ax|x210,Bx|1,则A(RB)()Ax|1x0Bx|0x1Cx|1x0Dx|1x0或x12若函数,则f(f(10)= ( )Alg101B2C1D03已知,关于x的不等式的解集为( )A或 BC或D4已知,则等于( )A3B2C1D-15函数的值域为( )A0,1BCD6已知等边三角形ABC的边长为1,那么( ).A3B-3CD7已知函数是定义在区间上的偶函数,当时,是减函数,如果不等式成立,则实数的取值范围( )ABCD8设,且,则的最小值是( )ABCD二、多选题9下列结论正确的是
2、( )A当时, B当时,的最小值是2C当时,的最小值为5D当,时, 10下列表述正确的是:( )A“”是“”的充分不必要条件B设向量,若,则C已知,满足,则D“,”的否定是“,”11四边形中,则下列表示正确的是( )ABCD12已知函数的图象关于直线对称,则( )A函数的图象向右平移个单位长度得到函数的图象B函数为偶函数C函数在上单调递增D若,则的最小值为二、填空题13化简_14.已知向量,若向量与平行,则_.15已知正实数满足,则的最小值是_16函数的值域为_,单调递增区间为_三、解答题17已知向量.(1)若,求的值;(2)若且在第三象限,求的值18已知a0,函数f(x)2asin2ab,当
3、时,51.(1)求常数a,b的值;(2)求f(x)的单调递增区间及对称轴方程.19如图,在四边形中,为等边三角形,是的中点.设,.(1)用,表示,(2)求与夹角的余弦值.20我国所需的高端芯片很大程度依赖于国外进口,“缺芯之痛”关乎产业安全、国家经济安全.如今,我国科技企业正在芯片自主研发之路中不断崛起.根据市场调查某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机万部并全部销售完,每万部的销售收入为万美元,且当该公司一年内共生产该款手机2万部并全部销售完时,年利润为704万美元.(1)写出年利润(万美元)关于年产量(万部)的函数
4、解析式:(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.21已知函数.(1)若函数在区间与内各有一个零点,求实数的取值范围;(2)若不等式在上恒成立,求实数的取值范围.22已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性并证明;(3)若关于的不等式在有解,求实数的取值范围.江苏省如皋市第一中学2020-2021学年度高一数学校调研测试4数学试卷一、单选题1已知R为实数集,Ax|x210,Bx|1,则A(RB)()Ax|1x0Bx|0x1Cx|1x0Dx|1x0或x1【答案】C2若函数,则f(f(10)= ( )Alg101B2C1D0【答案】
5、B3已知,关于x的不等式的解集为( )A或 BC或D【答案】A【分析】分解因式得,由可得,即可得出解集.【详解】不等式化为,故不等式的解集为或.故选:A.4已知,则等于( )A3B2C1D-1【答案】A【分析】根据诱导公式,结合同角的三角函数关系式进行求解即可.【详解】.故选:A5函数的值域为( )A0,1BCD【答案】B【分析】根据自变量的范围,得到的范围,进一步得到答案.【详解】解:,所以.故选:B.6已知等边三角形ABC的边长为1,那么( ).A3B-3CD【答案】D【分析】利用向量的数量积即可求解.【详解】解析:.故选:D【点睛】本题考查了向量的数量积,注意向量夹角的定义,属于基础题.
6、7已知函数是定义在区间上的偶函数,当时,是减函数,如果不等式成立,则实数的取值范围( )ABCD【答案】A【分析】根据偶函数的性质将不等式转化为,再根据单调性可解得结果.【详解】因为函数是定义在区间上的偶函数, 所以等价于,因为当时,单调递减,所以,解得.故选:A【点睛】关键点点睛:解题时,注意偶函数性质恒成立在解题中的应用,属于中档题.8设,且,则的最小值是( )ABCD【答案】B【分析】利用基本不等式可求出的最小值,利用换底公式以及对数的运算律可得出的最小值.【详解】,且,当且仅当时取等号.,则的最小值是.故选:B.【点睛】本题考查利用基本不等式求最值,同时也考查了换底公式以及对数运算性质
7、的应用,考查计算能力,属于基础题.二、多选题9下列结论正确的是( )A当时, B当时,的最小值是2C当时,的最小值为5D当,时, 【答案】AD【分析】利用基本不等式和等号成立时取最值对选项逐一判断即可.【详解】选项A中,时,当且仅当,即时等号成立,故正确;选项B中,时, 当且仅当时,即时取等号,但是,取不到最小值2,故错误;选项C中,时,则,故,当且仅当时,即时等号成立,取得最大值1,不存在最小值,故错误;选项D中,当,时,故 ,当且仅当时等号成立,故正确.故选:AD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2
8、)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10下列表述正确的是:( )A“”是“”的充分不必要条件B设向量,若,则C已知,满足,则D“,”的否定是“,”【答案】ACD【分析】根据三角函数的定义可判断A;根据向量共线的坐标表示可判断B;根据向量垂直的坐标表示可判断C;利用含有一个量词的命题否定变换形式可判断D.【详解】对于A,“”可推出“”,反之,当,可得或,故“”是“”的充分不必要条件,故
9、A正确;对于B,若,则,解得,故B错误;对于C,若,则,即,故C正确;对于D,由特称命题的否定变换形式,可得“,”的否定是“,”,故D正确.故选:ACD11四边形中,则下列表示正确的是( )ABCD【答案】BD【分析】利用向量的线性运算将用基底和表示,与选项比较即可得正确选项.【详解】 对于选项A:,故选项A不正确;故选项B正确;,故选项C不正确,故选项D正确;故选:BD12已知函数的图象关于直线对称,则( )A函数的图象向右平移个单位长度得到函数的图象B函数为偶函数C函数在上单调递增D若,则的最小值为【答案】BCD【分析】函数的图象关于直线对称,可得,对于A,根据函数的图象平移可判断;对于B
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
