分享
分享赚钱 收藏 举报 版权申诉 / 7

类型江苏省宿迁市宿豫中学2015届高考数学(二轮复习)专题检测:圆锥曲线中的探索性问题 .doc

  • 上传人:a****
  • 文档编号:308707
  • 上传时间:2025-11-23
  • 格式:DOC
  • 页数:7
  • 大小:142.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏省宿迁市宿豫中学2015届高考数学二轮复习专题检测:圆锥曲线中的探索性问题 江苏省 宿迁市 中学 2015 高考 数学 二轮 复习 专题 检测 圆锥曲线 中的 探索 问题
    资源描述:

    1、37圆锥曲线中的探索性问题1在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆y21有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由解(1)由已知条件,得直线l的方程为ykx,代入椭圆方程得(kx)21.整理得(k2)x22kx10.直线l与椭圆有两个不同的交点P和Q等价于8k24(k2)4k220,解得k.即k的取值范围为(,)(,)(2)设P(x1,y1),Q(x2,y2),则(x1x2,y1y2),由方程,得x1x2.又y1y2k(x1x2)2.而A

    2、(,0),B(0,1),(,1)所以与共线等价于x1x2(y1y2),将代入上式,解得k.由(1)知k,故不存在符合题意的常数k.2已知双曲线方程为x21,问:是否存在过点M(1,1)的直线l,使得直线与双曲线交于P、Q两点,且M是线段PQ的中点?如果存在,求出直线的方程,如果不存在,请说明理由解显然x1不满足条件,设l:y1k(x1)联立y1k(x1)和x21,消去y得(2k2)x2(2k22k)xk22k30,由0,得k,x1x2,由M(1,1)为PQ的中点,得1,解得k2,这与k0)过M(2,),N(,1)两点,O为坐标原点(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任

    3、意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求AB的取值范围;若不存在,请说明理由解(1)因为椭圆E:1(a,b0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为1.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为ykxm,A(x1,y1),B(x2,y2),解方程组得x22(kxm)28,即(12k2)x24kmx2m280,则16k2m24(12k2)(2m28)8(8k2m24)0,即8k2m240.故y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2m2.要使,需使x1x2y1y20,

    4、即0,所以3m28k280,所以k20.又8k2m240,所以所以m2,即m或m,因为直线ykxm为圆心在原点的圆的一条切线,所以圆的半径为r,r2,r,所求的圆为x2y2,此时圆的切线ykxm都满足m或m,而当切线的斜率不存在时切线为x与椭圆1的两个交点为(,)或(,)满足,综上,存在圆心在原点的圆x2y2,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.4(2014重庆)如图,设椭圆1(ab0)的左、右焦点分别为F1、F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处

    5、的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由解(1)设F1(c,0),F2(c,0),其中c2a2b2.由2,得DF1c,从而SDF1F2DF1F1F2c2,故c1,从而DF1.由DF1F1F2,得DFDFF1F,因此DF2.所以2aDF1DF22,故a,b2a2c21.因此,所求椭圆的标准方程为y21.(2)如图,设圆心在y轴上的圆C与椭圆y21相交,P1(x1,y1),P2(x2,y2)是两个交点,y10,y20,F1P1,F2P2是圆C的切线,且F1P1F2P2.由圆和椭圆的对称性,易知,x2x1,y1y2.由(1)知F1(1,0),F2(1,0),所

    6、以(x11,y1),(x11,y1),再由F1P1F2P2,得(x11)2y0.由椭圆方程得1(x11)2,即3x4x10,解得x1或x10.当x10时,P1,P2重合,题设要求的圆不存在当x1时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1F1P1,得1.而求得y1,故y0.圆C的半径CP1 .综上,存在满足题设条件的圆,其方程为x2(y)2.5(2014江西)如图,已知抛物线C:x24y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点)(1)证明:动点D在定直线上;(2)作C的任意一条切线

    7、l(不含x轴),与直线y2相交于点N1,与(1)中的定直线相交于点N2,证明:MNMN为定值,并求此定值(1)证明依题意可设AB方程为ykx2,代入x24y,得x24(kx2),即x24kx80.设A(x1,y1),B(x2,y2),则有x1x28.直线AO的方程为yx;BD的方程为xx2.解得交点D的坐标为注意到x1x28及x4y1,则有y2.因此动点D在定直线y2上(x0)(2)解依题设,切线l的斜率存在且不等于0,设切线l的方程为yaxb(a0),代入x24y得x24(axb),即x24ax4b0.由0得(4a)216b0,化简整理得ba2.故切线l的方程可写为yaxa2.分别令y2,y

    8、2得N1,N2的坐标为N1(a,2),N2(a,2),则MNMN(a)242(a)28,即MNMN为定值8.6(2014福建)已知曲线上的点到点F(0,1)的距离比它到直线y3的距离小2.(1)求曲线的方程(2)曲线在点P处的切线l与x轴交于点A,直线y3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论解方法一(1)设S(x,y)为曲线上任意一点,依题意,点S到F(0,1)的距离与它到直线y1的距离相等,所以曲线是以点F(0,1)为焦点、直线y1为准线的抛物线,所以曲线的方程为x24y.(2)当点P在曲线上运动时,线段AB的长度不变证明如下:由(1)知抛物线的方程为yx2,设P(x0,y0)(x00),则y0x,由yx,得切线l的斜率ky|xx0x0,所以切线l的方程为yy0x0(xx0),即yx0xx.由得A(x0,0)由得M(x0,3)又N(0,3),所以圆心C(x0,3),半径rMN|x0|,AB .所以点P在曲线上运动时,线段AB的长度不变方法二(1)设S(x,y)为曲线上任意一点,则|y(3)|2,依题意,点S(x,y)只能在直线y3的上方,所以y3,所以y1,化简,得曲线的方程为x24y.(2)同方法一

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏省宿迁市宿豫中学2015届高考数学(二轮复习)专题检测:圆锥曲线中的探索性问题 .doc
    链接地址:https://www.ketangku.com/wenku/file-308707.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1