江苏省徐州经济技术开发区高级中学2017年高考数学中档题练习:解几备选 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省徐州经济技术开发区高级中学2017年高考数学中档题练习:解几备选 WORD版含答案 江苏省 徐州 经济技术 开发区 高级中学 2017 年高 数学 中档 练习 备选 WORD 答案
- 资源描述:
-
1、解几1、【2016高考江苏卷】如图,在平面直角坐标系中,已知以为圆心的圆及其上一点(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;(2)设平行于的直线与圆相交于两点,且,求直线的方程;(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。【答案】(1)(2)(3)试题解析:解:圆M的标准方程为,所以圆心M(6,7),半径为5,.(1)由圆心在直线x=6上,可设.因为N与x轴相切,与圆M外切,所以,于是圆N的半径为,从而,解得.因此,圆N的标准方程为.(2)因为直线l|OA,所以直线l的斜率为.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离 因为 而
2、所以,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.考点:直线方程、圆的方程、直线与直线、直线与圆、圆与圆的位置关系、平面向量的运算【名师点睛】直线与圆中三个定理:切线的性质定理,切线长定理,垂径定理;两个公式:点到直线距离公式及弦长公式,其核心都是转化到与圆心、半径关系上,这是解决直线与圆的根本思路.对于多元问题,也可先确定主元,如本题以为主元,揭示在两个圆上运动,从而转化为两个圆有交点这一位置关系,这也是解决直线与圆问题的一个思路,即将问题转化为直线与圆、圆与圆位置关系.2、【2016年高考北京理数】(本小题14分)已知椭圆C: ()的离心率为 ,的面积为1
3、.(1)求椭圆C的方程;(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.求证:为定值.【答案】(1);(2)详见解析.试题分析:(1)根据离心率为,即,的面积为1,即,椭圆中列方程求解;(2)根据已知条件分别求出,的值,求其乘积为定值.试题解析:(1)由题意得解得.所以椭圆的方程为.令,得.从而.所以.当时,所以.综上,为定值.考点:1.椭圆方程及其性质;2.直线与椭圆的位置关系.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到
4、繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.3、【2016高考天津理数】(本小题满分14分)设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.【答案】()()【解析】试题分析:()求椭圆标准方程,只需确定量,由,得,再利用,可解得,()先化简条件:,即M再OA中垂线上,再利用直线与椭圆位置关系,联立方程组求;利用两直线方程组求H,最后根据,列等量关系解出直线斜率.取值范围解得,或,由题意得,从而.由()知,
5、设,有,.由,得,所以,解得.因此直线的方程为.设,由方程组消去,解得.在中,即,化简得,即,解得或.所以,直线的斜率的取值范围为.考点:椭圆的标准方程和几何性质,直线方程【名师点睛】在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围8、在平面直角坐标系中,椭圆的离心率,且点在椭圆上.(1)求椭圆的
6、方程;(2)若点都在椭圆上,且中点在线段(不包括端点)上.求直线的斜率;求面积的最大值.11.如图,在平面直角坐标系中,已知椭圆()的离心率为为椭圆上异于顶点的一点,点满足(1)若点的坐标为,求椭圆的方程;(2)设过点的一条直线交椭圆于两点,且,直线的斜率之积为,求实数的值12 (本小题满分14分)OxyFPQ(第17题图)如图,在平面直角坐标系xOy中,已知椭圆C:1(ab0)的离心率为,点(2,1)在椭圆C上(1)求椭圆C的方程;(2)设直线l与圆O:x2y22相切,与椭圆C相交于P,Q两点 若直线l过椭圆C的右焦点F,求OPQ的面积;求证: OPOQ12(本小题满分14分)解:(1)由题
7、意,得,1,解得a26,b23所以椭圆的方程为1 2分(2)解法一 椭圆C的右焦点F(,0)设切线方程为yk(x),即kxyk0,所以,解得k,所以切线方程为y(x)4分由方程组解得或 所以点P,Q的坐标分别为(,),(,),所以PQ 6分因为O到直线PQ的距离为,所以OPQ的面积为 因为椭圆的对称性,当切线方程为y(x)时,OPQ的面积也为综上所述,OPQ的面积为 8分解法二 椭圆C的右焦点F(,0)设切线方程为yk(x),即kxyk0,所以,解得k,所以切线方程为y(x)4分把切线方程 y(x)代入椭圆C的方程,消去y得5x28x60设P(x1,y1) ,Q(x2,y2),则有x1x2 由
8、椭圆定义可得,PQPFFQ2ae( x1x2)26分因为O到直线PQ的距离为,所以OPQ的面积为 因为椭圆的对称性,当切线方程为y(x)时,所以OPQ的面积为综上所述,OPQ的面积为 8分解法一:(i)若直线PQ的斜率不存在,则直线PQ的方程为x或x当x时,P (,),Q(,)因为0,所以OPOQ当x时,同理可得OPOQ 10分(ii) 若直线PQ的斜率存在,设直线PQ的方程为ykxm,即kxym0因为直线与圆相切,所以,即m22k22将直线PQ方程代入椭圆方程,得(12k2) x24kmx2m260.设P(x1,y1) ,Q(x2,y2),则有x1x2,x1x212分因为x1x2y1y2x1
9、x2(kx1m)(kx2m)(1k2)x1x2km(x1x2)m2(1k2)km()m2将m22k22代入上式可得0,所以OPOQ综上所述,OPOQ 14分解法二:设切点T(x0,y0),则其切线方程为x0xy0y20,且xy2 (i)当y00时,则直线PQ的直线方程为x或x当x时,P (,),Q(,)因为0,所以OPOQ当x时,同理可得OPOQ 10分(ii) 当y00时,由方程组消去y得(2xy)x28x0x86y0设P(x1,y1) ,Q(x2,y2),则有x1x2,x1x2 12分所以x1x2y1y2x1x2因为xy2,代入上式可得0,所以OPOQ综上所述,OPOQ 14分13(本小题
10、满分16分)在平面直角坐标系中,已知椭圆:的左,右焦点分别是,右顶点、上顶点分别为,原点到直线的距离等于 (1)若椭圆的离心率等于,求椭圆的方程;(2)若过点的直线与椭圆有且只有一个公共点,且在第二象限,直线交轴于点试判断以为直径的圆与点的位置关系,并说明理由13解:由题意,得点,直线的方程为,即由题设,得,化简,得 2分(1),即由,解得 5分所以,椭圆的方程为 6分(2)点在以为直径的圆上由题设,直线与椭圆相切且的斜率存在,设直线的方程为:,由,得,(*) 8分则,化简,得,所以, ,点在第二象限, 10分把代入方程(*) ,得,解得,从而,所以 11分从而直线的方程为:,令,得,所以点
11、12分从而, 13分从而, 又, 15分所以点在以为直径的圆上 16分16.如图,在平面直角坐标系中,已知椭圆的离心率为,长轴长为4,过椭圆的左顶点作直线,分别交椭圆和圆于相异两点.(1)若直线的斜率为,求的值;(2)若,求实数的取值范围.16.(1)由条件,解得所以椭圆的方程为,圆的方程为(方法一)直线的方程为,由得:解得,所以所以,又因为原点到直线的距离所以,所以(方法二)由得,所以 所以;(2)(方法一)若,则设直线,由得,即,所以,得所以,即,同理由题意:,所以.17. (本小题满分14分)在平面直角坐标系中,已知圆经过椭圆的焦点.(1)求椭圆的标准方程;lTPOyxQ第17题图(2)
12、设直线交椭圆于两点,为弦的中点,记直线的斜率分别为,当时,求的值.17解:(1)因,所以椭圆的焦点在轴上,又圆经过椭圆的焦点,所以椭圆的半焦距, 3分所以,即,所以椭圆的方程为. 6分(2)方法一:设,联立,消去,得,所以,又,所以,所以, 10分则. 14分方法二:设, 则,两式作差,得,又,又,在直线上,又在直线上,由可得,. 10分以下同方法一.19、如图,在平面直角坐标系中,已知椭圆的离心率为,且右焦点到左准线的距离为(1)求椭圆的标准方程;(2)设为椭圆的左顶点,为椭圆上位于轴上方的点,直线交轴于点,过点作的垂线,交轴于点()当直线的斜率为时,求的外接圆的方程;()设直线交椭圆于另一
13、点,求的面积的最大值19(1)由题意,得 解得 则,所以椭圆的标准方程为 4分(2)由题可设直线的方程为,则,所以直线的方程为,则(i)当直线的斜率为,即时,因为,所以圆心为,半径为,所以的外接圆的方程为8分(ii)联立 消去并整理得,解得或,所以,10分直线的方程为,同理可得,所以,关于原点对称,即过原点所以的面积,14分当且仅当,即时,取“”所以的面积的最大值为16分20、已知椭圆的离心率为,且过点(1)求椭圆的方程;(2)设点在椭圆上,且与轴平行,过点作两条直线分别交椭圆于两点,若直线平分,求证:直线的斜率是定值,并求出这个定值21.已知椭圆,动直线l与椭圆B,C两点(B在第一象限).(
14、1)若点B的坐标为,求面积的最大值;(2)设,且,求当面积最大时,直线l的方程.OPQxy22(本题满分14分)如图,在平面直角坐标系中,已知椭圆的离心率为,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P为椭圆上的一点,过点O作OP的垂线交直线于点Q,求的值;22. 解:(1)由题意得:,2分解得:,所以椭圆的标准方程为;4分(2)由题意知OP的斜率存在,当OP的斜率为0时,所以=1,6分当OP的斜率不为0时,设直线OP的方程为,由得:,解得:,所以,所以,9分因为,所以直线OQ的方程为,由得:,所以,12分所以=,综上,可知=1.14分11.【2016全国大联考4(课标卷)】已
15、知、分别是椭圆:的左、右焦点,是椭圆上一点,线段的中点为,(O为坐标原点)的周长为3,过右焦点与轴垂直的直线与椭圆在第一象限交于点,. ()求椭圆的标准方程;()过作直线交椭圆于两点,以为邻边作平行四边形,求四边形面积的取值范围. ()设,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,7分=,9分设,则,=(),设=,=0,在1,+)上是增函数,所以,0=,0=12, 11分四边形面积的取值范围是(0,12. 12分13.如图,在平面直角坐标系中,已知,是椭圆上不同的三点,在第三象限,线段的中点在直线上(第18题)(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点在椭圆
16、上(异于点,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值解:(1)由已知,得解得2分所以椭圆的标准方程为3分(2)设点,则中点为由已知,求得直线的方程为,从而又点在椭圆上,由,解得(舍),从而5分所以点的坐标为6分(3)设,三点共线,整理,得8分三点共线,整理,得10分点在椭圆上,从而14分所以15分为定值,定值为 16分已知椭圆的右准线,离心率,是椭圆上的两动点,动点满足,(其中为常数)(1)求椭圆标准方程;(2)当且直线与斜率均存在时,求的最小值;第18题yxFO(3)若是线段的中点,且,问是否存在常数和平面内两定点,使得动点满足,若存在,求出的值和定点,;若不存在,请
17、说明理由解:(I)由题设可知:又,椭圆标准方程为5分(2)设则由得由得当且仅当时取等号10分(3)kOAkOB4x1x29y1y2011分设P(x,y),则由得(x,y)(x1,y1) (x2,y2)(x1x2,y1y2),即xx1x2,yy1y2. 因为点A、B在椭圆4x29y236上,所以xy36,4x9y36,故4x29y24(xx2x1x2)9(yy2y1y2)(4x9y)(4x9y)2(4x1x29y1y2)3636+2(4x1x29y1y2)所以4x29y23636. 即,所以P点是椭圆上的点,设该椭圆的左、右焦点为,则由椭圆的定义得18,,16分(第三问若给出判断无证明给1分)Z
18、.变题:在平面直角坐标系中,设椭圆的离心率的值为,焦点到准线的距离为1(1) 求椭圆的方程;(2) 设为直线上一点,为椭圆上的一点,且满足,为定值,求实数的值解:(1) 因为, ,所以,椭圆的方程为(2) 由题意知的斜率存在当的斜率为0时, 所以当的斜率不为0时,设直线方程为由得,解得,所以,所以因为,所以直线方程为由得,所以所以因为为定值,所以,又因为,所以当时,由上述讨论可知解法二:设,因为,所以因为,所以,因为为定值,所以,又因为,所以拓展:在平面直角坐标系中,已知椭圆设为直线上一点,为椭圆上的一点,且满足,为定值,则11. (2016届南京盐城二检18本小题满分16分)在平面直角坐标系
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-321193.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
(吉林专版)2022八年级语文下册 专题七 综合性学习课件 新人教版.pptx
