分享
分享赚钱 收藏 举报 版权申诉 / 16

类型(全国统考版)2021届高考数学二轮复习 验收仿真模拟卷(八)(理含解析).doc

  • 上传人:a****
  • 文档编号:32458
  • 上传时间:2025-10-27
  • 格式:DOC
  • 页数:16
  • 大小:267.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    全国统考版2021届高考数学二轮复习 验收仿真模拟卷八理含解析 全国 统考 2021 高考 数学 二轮 复习 验收 仿真 模拟 解析
    资源描述:

    1、高考仿真模拟卷(八) (时间:120分钟;满分:150分)第卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1设集合Mx|x0,Nx|ln x1,则下列结论正确的是()ANMBMNCM(RN)RDM(RN)M2设复数z满足2i,则()A.B.C.D.3若非零向量a,b满足|a|b|,(2ab)b0,则a,b的夹角为()A.B.C.D.4若a,b都是实数,则“0”是“a2b20”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5已知tan(2),tan(2),则tan()()AB.C.D.6若x表示不超过x的最大整数,则下图的程序

    2、框图运行之后输出的结果为()A49 850B49 900C49 800D49 9507已知an是由正数组成的等比数列,Sn为其前n项和若a2a416,S37,则S4()A15B31C63D.8如图,己知函数f(x)的图象关于坐标原点O对称,则函数f(x)的解析式可能是()Af(x)x2ln|x|Bf(x)xln xCf(x)Df(x)9已知直角梯形ABCD中,ADBC,ADC90,AD2,BC1,P是腰DC上的动点,则|3|的最小值为()A3B4C5D610在三棱锥DABC中,已知AD平面ABC,且ABC为正三角形,ADAB,点O为三棱锥DABC的外接球的球心,则点O到棱DB的距离为()A.B

    3、.C.D.11已知P是双曲线y21上任意一点,过点P分别作双曲线的两条渐近线的垂线,垂足分别为A,B,则的值是()AB.CD不确定12已知f(x)和g(x)是两个定义在区间M上的函数,若对任意的xM,存在常数x0M,使得f(x)f(x0),g(x)g(x0),且f(x0)g(x0),则称f(x)与g(x)在区间M上是“相似函数”若f(x)2x2axb与g(x)x在上是“相似函数”,则函数f(x)在区间上的最大值为()A4B.C6D.题号123456789101112答案第卷二、填空题:本题共4小题,每小题5分13.(2x)5的展开式中x2的系数是_(用数字作答)14已知等比数列an的前n项和为

    4、Sn,满足a11,S33,则Sn_15古希腊的数学家研究过各种多边形数记第n个k边形数为N(n,k)(k3),以下列出了部分k边形中第n个数的表达式:三角形数N(n,3)n2n,四边形数N(n,4)n2,五边形数N(n,5)n2n,六边形数N(n,6)2n2n,可以推测N(n,k)(k3)的表达式,由此计算N(20,15)的值为_16已知点P在直线x3y20上,点Q在直线x3y60上,线段PQ的中点为M(x0,y0),且y0x02,则的取值范围是_三、解答题:解答应写出文字说明、证明过程或演算步骤17(本小题满分12分)在ABC中,内角A,B,C的对边分别是a,b,c,且.(1)求角B的大小;

    5、(2)点D满足2,且AD3,求2ac的最大值18(本小题满分12分)如图,在四棱锥PABCD中,PA平面ABCD,ABC90,ABCADC, PAAC2AB2,E是线段PC的中点(1)求证:DE平面PAB;(2)求二面角DCPB的余弦值19(本小题满分12分)为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km/h的有40人,不超过100 km/h的有15人;在45名女性驾驶员中,平均车速超过100 km/h的有20人,不超过100 km/h的有25人(1)完成下面22列联

    6、表,并判断有多大的把握认为“平均车速超过100 km/h与性别有关”?平均车速超过100 km/h平均车速不超过100 km/h总计男性驾驶员女性驾驶员总计附:K2,其中nabcd.P(K2k0)0.1500.1000.0500.0100.0050.001k02.0722.7063.8416.6357.87910.828(2)在被调查的驾驶员中,从平均车速不超过100 km/h的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(3)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h且为男性驾驶员的车辆数为X,求X的分布

    7、列和数学期望E(X)20(本小题满分12分)已知椭圆C:1(ab0)的右顶点为A,上顶点为B,且直线AB与抛物线y24x在第一象限的交点D到该抛物线的准线的距离为2,椭圆C的离心率 e.(1)求椭圆C的标准方程;(2)若直线yxm与椭圆C交于M,N两点,直线yxm与椭圆C交于P,Q两点,求当四边形MPNQ的面积取最大值时m的值21(本小题满分12分)已知函数f(x)aln(1x)(aR),g(x)x2emx(mR)(1)当a1时,求函数f(x)的最大值;(2)若a0,且对任意的x1,x20,2,f(x1)1g(x2)恒成立,求实数m的取值范围请考生在22、23题中任选一题作答,如果多做,则按所

    8、做的第一题计分22(本小题满分10分)选修44:坐标系与参数方程在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为2sin ,0,2)(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:(t为参数,tR)的距离最短,并求出点D的直角坐标23(本小题满分10分)选修45:不等式选讲已知函数f(x)|xa|x2a|.(1)当a1时,求不等式f(x)2的解集;(2)若对任意xR,不等式f(x)a23a3恒成立,求a的取值范围高考仿真模拟卷(八)1解析:选D.由ln x1,得0xe,所以Nx|0e,所以M(RN)x|x0M.2解析:选C.

    9、由题意可得:1z(2i)(1i)3i,所以z2i,.3解析:选D.由题得2abb20,所以2|b|2cosa,b|b|20,所以cosa,b,所以a,b.故选D.4解析:选A.由0得ab0,则a2b2a2b20;由a2b20得a2b2,可得ab0或a0”是“a2b20”的充分不必要条件,故选A.5解析:选B.tan()tan(2)(2),故选B.6解析:选A.由已知可得S040140240494050174085049 850.故选A.7解析:选A.因为数列an中各项均为正数,所以a34,设数列的公比为q,由S37,得S23,即a1(1q)3,又a3a1q24,所以(1q)3,解得q(舍去)或

    10、q2,所以a4a3q8,所以S4S3a415. 故选A.8解析:选D.根据f(x)关于原点对称可知该函数为奇函数,对于A选项f(x)x2ln |x|f(x),为偶函数,不符合;对于B选项定义域不对;对于C选项当x0的时候,f(x)0恒成立不符合该函数图象,故错误;对于D选项,f(x)f(x),符合判定,故选D.9解析:选C.以D为原点,分别以DA、DC所在直线为x、y轴建立如图所示的平面直角坐标系,设DCa,DPx.所以D(0,0),A(2,0),C(0,a),B(1,a),P(0,x),(2,x),(1,ax),所以3(5,3a4x),|3|225(3a4x)225,所以|3|的最小值为5.

    11、故选C.10解析:选D.设三棱锥DABC的外接球球心为O,过点O作DB的垂线,垂足为H,作平面ODA交直线BC于点E,交于点F,设平面ODA截得外接球是O,D,A,F是O表面上的点,又因为DA平面ABC,所以DAF90,所以DF是O的直径,因此球心O在DF上,AF是三角形ABC外接圆的直径,连接BD,BF,因为BFDA,BFAB,所以BF平面DAB,所以DBF90,因为DHO90,所以OHBF,又DOOF,所以OH是DBF的中位线,OHBF,由ABAD,三角形外接圆半径2R,得AF2,在RtDAB中,DB,在RtDAF中,DF,在RtDBF中,BF1,故OH,故选D.11解析:选A.令点P(x

    12、0,y0),因为该双曲线的渐近线分别是y0,y0,所以可取|PA|,|PB|,又cos APBcos AOBcos 2AOxcos,所以|cosAPB.12解析:选C.由题意知g(x)1,令g(x)0可得1x2,令g(x)0可得2x,所以g(x)maxg(1)5,g(x)ming(2)4,所以g(x)x在上的最小值为4,最大值为5,对任意的xM,存在常数x0M,使得g(x)g(x0),则g(x0)g(x)min4,此时x02,根据题意知f(x)minf(2)4,二次函数f(x)2x2axb的顶点坐标为(2,4),所以a8,b12,所以f(x)2(x2)24,所以f(x)在上的最大值f(x)ma

    13、xf(1)6.13解析:(2x)5展开式中,含x2的项为2C23x2C22x3(2C23C22)x2200x2,所以系数为200.故答案为200.答案:20014解析:由题当q1时,S33,解得(q2)(q1)0,得q2,此时Sn;当q1时,a11,S33,满足题意,则此时Snn.综上Sn或Snn.答案:或n15解析:原已知式子可化为N(n,3)n2nn2n;N(n,4)n2n2n;N(n,5)n2nn2n;N(n,6)2n2nn2n.故N(n,k)n2n,N(20,15)202202 490.答案:2 49016解析:线段PQ的中点M(x0,y0)的轨迹方程为x03y020,由y0x02,得

    14、x02,则(0,)答案:(0,)17解:(1),由正弦定理可得,所以c(ac)(ab)(ab),即a2c2b2ac.又a2c2b22accos B,所以cos B,因为B(0,),所以B.(2)法一:在ABD中,由余弦定理得c2(2a)222accos 32,所以(2ac)2932ac.因为2ac,所以(2ac)29(2ac)2,即(2ac)236,2ac6,当且仅当2ac,即a,c3时,2ac取得最大值,最大值为6.法二:在ABD中,由正弦定理知2,所以2a2sinBAD,c2sinADB,所以2ac2sinBAD2sinADB2(sinBADsinADB)266sin.因为BAD,所以BA

    15、D,所以当BAD,即BAD时,2ac取得最大值,最大值为6.18解:(1)证明:法一:设线段AC的中点为O,连接OD,OE,OB.因为ABC90,所以BOAC1,同理DO1,又ABAD1,所以四边形ABOD是平行四边形,所以DOAB.又O,E分别是AC,PC的中点,所以OEPA.又PAABA,OD,OE平面ODE,ODOEO,所以平面ODE平面PAB.又DE平面ODE,所以DE平面PAB.法二:因为ABBC,PA平面ABCD,所以以B为坐标原点,BA所在的直线为x轴,BC所在的直线为y轴,过点B且与平面ABC垂直的直线为z轴,建立空间直角坐标系Bxyz,则B(0,0,0),C(0,0),P(1

    16、,0,2),D,A(1,0,0),E,所以(1,0,1),(1,0,2),(1,0,0)设平面PAB的法向量为n(a,b,c),则所以所以n(0,1,0)为平面PAB的一个法向量又n0,所以DE平面PAB.(2)由(1)法二中的空间直角坐标系,易知(0,0),设平面PBC的法向量为n1(x1,y1,z1),则所以所以n1(2,0,1)为平面PBC的一个法向量设平面DPC的法向量为n2(x2,y2,z2),则,所以所以n2(1,1)为平面DPC的一个法向量所以cosn1,n2,故二面角DCPB的余弦值为.19解:(1)完成的22列联表如下:平均车速超过100 km/h平均车速不超过100 km/

    17、h总计男性驾驶员401555女性驾驶员202545总计6040100K28.2497.879,所以有99.5%的把握认为“平均车速超过100 km/h与性别有关”(2)平均车速不超过100 km/h的驾驶员有40人,从中随机抽取2人的方法总数为C,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A,则事件A所包含的基本事件数为CC,所以所求的概率P(A).(3)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h且为男性驾驶员的概率为,故XB.所以P(X0)C;P(X1)C;P(X2)C;P(X3)C.所以X的分布列为X0123PE(X)0123.20解:(1)设点D

    18、的坐标为(x0,y0),由抛物线的几何性质可知x012,故x01,y02,所以D(1,2)又点D(1,2)在直线AB:1上,故1.设椭圆的左,右焦点分别为F1(c,0),F2(c,0),由离心率e,知,即,所以a2b.由可得a5,b,故椭圆C的标准方程为1.(2)由可得5x28mx4m2250.设M(x1,y1),N(x2,y2),则(8m)245(4m225)0,故0m2,又x1x2,x1x2,则|MN| ; 同理可得|PQ| .由题意知MNPQ,故四边形MPNQ的面积为S|MN|PQ|(1254m2),又0m2,所以当m0时,面积S取得最大值20.21解:(1)函数f(x)的定义域为(1,

    19、),当a1时,f(x),所以当x(1,0)时,f(x)0,函数f(x)在(1,0)上单调递增,当x(0,)时,f(x)0,函数f(x)在(0,)上单调递减,所以f(x)maxf(0)0.(2)令(x)f(x)1,则“当a0时,对任意的x1,x20,2,f(x1)1g(x2)恒成立”等价于“当a0时,对任意的x0,2,(x)ming(x)max”由于(x),故当a0时,对任意的x0,2,有(x)0,从而函数(x)在0,2上单调递增,所以(x)min(0)1.g(x)2xemxx2emxm(mx22x)emx.当m0时,g(x)x2,当x0,2时,g(x)maxg(2)4,显然不满足g(x)max

    20、1.当m0时,令g(x)0得,x0或x.(i)当2,即1m0时,若x0,2,则g(x)0,所以g(x)在0,2上单调递增,所以g(x)maxg(2)4e2m,所以4e2m1,得mln 2,所以1mln 2.(ii)当02,即m1时,若x,则g(x)0,g(x)单调递增,若x,则g(x)0,g(x)单调递减,所以g(x)maxg,所以1,得m,所以m1.(iii)当0,即m0时,若x0,2,则g(x)0,g(x)单调递增,所以g(x)maxg(2)4e2m,4e2m1不成立综合所述,实数m的取值范围是(,ln 222解:(1)由 2sin ,0,2),可得22sin .因为 2x2y2,sin

    21、y,所以曲线C的直角坐标方程为x2y22y0(或x2(y1)21)(2)因为直线l的参数方程为(t为参数,tR),消去t得直线l的普通方程为yx5.因为曲线C:x2(y1)21是以G(0,1)为圆心,1为半径的圆,设点D(x0,y0),且点D到直线l:yx5的距离最短,所以曲线C在点D处的切线与直线l:yx5平行,即直线GD与l的斜率的乘积等于1,即()1.因为x(y01)21,由解得x0或x0,所以点D的直角坐标为或.由于点D到直线yx5的距离最短,所以点D的直角坐标为.23解:(1)当a1时,f(x)|x1|x2|.当x1时,f(x)1x2x32x,此时由f(x)2得x;当1x2时,f(x)x12x1,此时f(x)2无解;当x2时,f(x)x1x22x3,此时由f(x)2得x.综上可得不等式f(x)2的解集为.(2)因为f(x)|xa|x2a|(xa)(x2a)|a|,故f(x)取得最小值|a|,因此原不等式等价于|a|a23a3.当a0时,有aa23a3,即a24a30,解得2a2,此时有0a2.当a0时,有aa23a3,即a22a30,解得1a3,此时有1a0.综上可知a的取值范围是1,2

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(全国统考版)2021届高考数学二轮复习 验收仿真模拟卷(八)(理含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-32458.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1