(全国统考版)2021届高考数学二轮复习 验收仿真模拟卷(六)(文含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国统考版2021届高考数学二轮复习 验收仿真模拟卷六文含解析 全国 统考 2021 高考 数学 二轮 复习 验收 仿真 模拟 解析
- 资源描述:
-
1、高考仿真模拟卷(六) (时间:120分钟;满分:150分)第卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的 1已知集合A,By|y,则AB()A2 B0 C2,2 D0,22已知复数z,其中i为虚数单位,则|z|()A. B1 C. D23在ABC中,M为AC的中点,xy,则xy()A1 B. C. D.4已知cos,则sin的值是()A. B. C D5已知直线l:xay10(aR)是圆C:x2y24x2y10的对称轴过点A(4,a)作圆C的一条切线,切点为B,则|AB|()A2 B4 C6 D26执行如图所示的程序框图,若输出s4,则判断框内应
2、填入的条件是()Ak14 Bk15 Ck16 Dk177长方体ABCDA1B1C1D1,AB4,AD2,AA1,则异面直线A1B1与AC1所成角的余弦值为()A. B. C. D.8.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为周碑算经一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF2AF4,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.9
3、抛物线x2y在第一象限内图象上一点(ai,2a)处的切线与x轴交点的横坐标记为ai1,其中iN*,若a232,则a2a4a6等于()A64 B42 C32 D2110已知平面向量a,b的夹角为,|ab|a|2.若非零向量ca与cb的夹角为,则|c|的取值范围是()A(,4 B(2,4C(2,2 D2,411.已知函数f(x)Asin(x)的图象如图所示,令g(x)f(x)f(x),则下列关于函数g(x)的说法中不正确的是()A函数g(x)图象的对称轴方程为xk(kZ)B函数g(x)的最大值为2C函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y3x1平行D方程g(x)2的两个不同的解
4、分别为x1,x2,则|x1x2|最小值为12已知函数f(x)x2ax(xe,e为自然对数的底数)与g(x)ex的图象上存在关于直线yx对称的点,则实数a的取值范围是()A. B.C. D.题号123456789101112答案第卷二、填空题:本题共4小题,每小题5分13若变量x,y满足约束条件且z2xy的最小值为6,则k_.14在ABC中,a、b、c分别为角A、B、C的对边,且满足4cos2cos2(BC),若a2,则ABC的面积的最大值是_15在三棱锥PABC中,PAPB2,AB4,BC3,AC5,若平面PAB平面ABC,则三棱锥PABC外接球的表面积为_16若a,b是函数f(x)x2pxq
5、(p0,q0)的两个不同的零点,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则pq的值等于_三、解答题:解答应写出文字说明、证明过程或演算步骤17(本小题满分12分)设Sn为数列an的前n项和,已知a12,对任意nN*,都有2Sn(n1)an.(1)求数列an的通项公式;(2)若数列的前n项和为Tn,求证:Tn1.18(本小题满分12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成40,50),50,60),60,70),70,80),80,90),90,100六组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题(1)
6、求分数在70,80)内的频率;(2)从频率分布直方图中,估计本次考试成绩的中位数;(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率19.(本小题满分12分)如图,四棱锥PABCD中,PD底面ABCD,ABCD,BAD,AB1,CD3,M为PC上一点,且MC2PM.(1)证明:BM平面PAD;(2)若AD2,PD3,求点D到平面PBC的距离20(本小题满分12分)设函数f(x)ln xx22axa2,aR.(1)当a0时,曲线yf(x)与直线y3xm相切,求实数m的值;(2)若函数f(x)在1,3上存在单调递增区间,求a的取值范围 .21(本小题满分1
7、2分)已知椭圆1(ab0)的离心率为,以椭圆的一个短轴端点及两个焦点为顶点的三角形的面积为,圆C的方程为(xa)2(yb)2.(1)求椭圆及圆C的方程;(2)过原点O作直线l与圆C交于A,B两点,若2,求直线l被圆C截得的弦长请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分22(本小题满分10分)选修44:坐标系与参数方程在平面直角坐标系xOy中,直线l的参数方程为(t为参数)在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为2sin .(1)写出直线l的普通方程和圆C的直角坐标方程;(2)若点P坐标为(3,),圆C与直线l交于A、B两点,求|PA|PB|的值23(
8、本小题满分10分)选修45:不等式选讲已知函数f(x)2|x1|x2|.(1)求f(x)的最小值m;(2)若a,b,c均为正实数,且满足abcm,求证:3.高考仿真模拟卷(六)1解析:选B.由2x4,得2x2,即A2,2,由y,得x2,所以y0,所以B0,所以AB0故选B.2解析:选B.因为zi,所以|z|1.3解析:选B.(),故x1,yxy.4解析:选A.sinsincos.5解析:选C.由于直线xay10是圆C:x2y24x2y10的对称轴,所以圆心C(2,1)在直线xay10上,所以2a10,所以a1,所以A(4,1)所以|AC|236440.又r2,所以|AB|240436.所以|A
9、B|6.6解析:选B.由程序可知,该程序是计算s1log23log34logk(k1)log2(k1),由slog2(k1)4,得k15,则当k15时,kk115116不满足条件,所以条件为k15.故选B.7解析:选C.因为C1D1A1B1,所以异面直线A1B1与AC1所成的角即为C1D1与AC1所成的角AC1D1,在RtAC1D1中,C1D14,AC15,所以cosAC1D1.8解析:选A.在ABD中,AD6,BD2,ADB120,由余弦定理,得AB2,所以,所以所求概率为.9解析:选B.令yf(x)2x2,则切线斜率kf(ai)4ai,切线方程为y2a4ai(xai),令y0得xai1ai
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
