2021-2022高中数学人教版必修2教案:4-2-3直线与圆的方程的应用 (系列五) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修2教案:4-2-3直线与圆的方程的应用 系列五 WORD版含答案 2021 2022 高中 学人 必修 教案 直线 方程 应用 系列 WORD 答案
- 资源描述:
-
1、4.2.3 直线与圆的方程的应用一、教材分析 直线与圆的方程在生产、生活实践以及数学中有着广泛的应用.本小节设置了一些例题,分别说明直线与圆的方程在实际生活中的应用,以及用坐标法研究几何问题的基本思想及其解题过程.二、教学目标1知识与技能(1)理解掌握,直线与圆的方程在实际生活中的应用.(2)会用“数形结合”的数学思想解决问题.2过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.3情态与价值观让学生通过观察图形,理解并掌握直线与圆的
2、方程的应用,培养学生分析问题与解决问题的能力.三、教学重点与难点教学重点:求圆的应用性问题.教学难点:直线与圆的方程的应用.四、课时安排1课时五、教学设计(一)导入新课思路1.如图1,某城市中的高空观览车的高度是100 m,图1 在离观览车约150 m处有一建筑物,某人在离建筑物100 m的地方刚好可以看到观览车,你根据上述数据,如何求出该建筑物的高度?要解决这个问题,我们继续研究直线与圆的方程的应用,教师板书课题:直线与圆的方程的应用.思路2.同学们,前面我们学习了圆的方程、直线与圆的位置关系、圆和圆的位置关系,那么如何利用这些关系来解决一些问题,怎样解决?带着这些问题我们学习直线与圆的方程
3、的应用.教师板书课题:直线与圆的方程的应用.(二)推进新课、新知探究、提出问题你能说出直线与圆的位置关系吗?解决直线与圆的位置关系,你将采用什么方法?阅读并思考教科书上的例4,你将选择什么方法解决例4的问题?你能分析一下确定一个圆的方程的要点吗?你能利用“坐标法”解决例5吗?活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,发散思维.学生回顾学习的直线与圆的位置关系的种类;解决直线与圆的位置关系,可以采取两种方法;首先考虑问题的实际意义,如果本题出在初中,我们没有考虑的余地,只有几何法,在这里当然可以考虑用坐
4、标法,两种方法比较可知哪个简单;回顾圆的定义可知确定一个圆的方程的条件;利用“坐标法”解决问题的关键是建立适当的坐标系,再利用代数与几何元素的相互转化得到结论.讨论结果:直线与圆的位置关系有三类:相交、相切、相离.解决直线与圆的位置关系,将采用代数和几何两种方法,多数情况下采用圆心到直线的距离与半径的关系来解决.阅读并思考教科书上的例4,先用代数方法及坐标法,再用几何法,作一比较.你能分析一下确定一个圆的方程的要点,圆心坐标和半径,有时关于D、E、F的三个独立的条件也可.建立适当的坐标系,具体解法我们在例题中展开.(三)应用示例思路1例1 讲解课本4.2节例4,解法一见课本.图2解法二:如图2
5、,过P2作P2HOP.由已知,|OP|=4,|OA|=10.在RtAOC中,有|CA|2=|CO|2+|OA|2设拱圆所在的圆的半径为r,则有r2=(r-4)2+102.解得r=14.5.在RtCP2H中,有|CP2|2=|CH|2+|P2H|2.因为|P2H|=|OA2|=2,于是有|CH|2=r2-|OA2|2=14.52-4=206.25.又|OC|=14.5-4=10.5,于是有|OH|=|CH|-|CO|=-10.514.36-10.5=3.86.所以支柱A2P2的长度约为3.86 cm.点评:通过课本解法我们总结利用坐标法解决几何问题的步骤是:第一步:建立适当的平面直角坐标系,用坐
6、标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.把两种解法比较可以看出坐标法通俗易懂,几何法较难想,繁琐,因此解题时要有所选择.变式训练 已知圆内接四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.图3解:如图3,以四边形ABCD互相垂直的对角线CA、DB所在直线分别为x轴、y轴,建立适当的平面直角坐标系,设A(a,0),B(0,b),C(c,0),D(0,d).过四边形ABCD的外接圆的圆心O1分别作AC、BD、AD的垂线,垂足分别为M、N、E,则M、N、E分别为线段AC、BD、A
7、D的中点,由线段的中点坐标公式,得=xm=,=yn=,xE=,yE=.所以|O1E|=.又|BC|=,所以|O1E|=|BC|.点评:用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素、点、直线、圆.将几何问题转化为代数问题,然后通过代数运算解决代数问题,最后解释代数运算结果的几何意义,得到几何问题的结论.例2 有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后回运的运费是:每单位距离A地的运费是B地运费的3倍,已知A、B两地相距10 km,居民选择A或B地购买这种商品的标准是:包括运费和价格的总费用较低.求A、B两地的售货区域的分界线的曲线形状,并指出曲线上、
8、曲线内、曲线外的居民应如何选择购货地点.活动:学生先审题,然后思考或讨论,学生有困难教师可以提示引导,建立适当的坐标系,这里以AB所在直线为x轴,线段AB的中点为原点建立直角坐标系较简单,假设一点距A地近,且费用低,列方程或不等式.解:以AB所在直线为x轴,线段AB的中点为原点建立直角坐标系,则A(5,0),B(5,0).设某地P的坐标为(x,y),且P地居民选择A地购买商品的费用较低,并设A地的运费为3a元/km,则B地运费为a元/km.由于P地居民购买商品的总费用满足条件:价格+A地运费价格+B地运费,即3aa,整理得(x+)2+y2()2.所以以点C(-,0)为圆心,为半径的圆就是两地居
9、民购货的分界线.圆内的居民从A地购货费用较低,圆外的居民从B地购货费用较低,圆上的居民从A、B两地购货的总费用相等,因此可以随意从A、B两地之一购货.点评:在学习中要注意联系实际,重视数学在生产、生活和相关学科中的应用,解决有关实际问题时,关键要明确题意,掌握建立数学模型的基本方法.思路2例1 求通过直线2x-y+3=0与圆x2+y2+2x-4y+1=0的交点,且面积最小的圆的方程.活动:学生思考或交流,教师提示引导,求圆的方程无非有两种方法:代数法和几何法.解法一:利用过两曲线交点的曲线系,设圆的方程为x2+y2+2x-4y+1+(2x-y+3)=0,配方得标准式(x+1+)2+(y-2-)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-461998.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
