2021届山东高考数学一轮创新教学案:第7章 第2讲 空间几何体的表面积与体积 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届山东高考数学一轮创新教学案:第7章 第2讲 空间几何体的表面积与体积 WORD版含解析 2021 山东 高考 数学 一轮 创新 教学 空间 几何体 表面积 体积 WORD 解析
- 资源描述:
-
1、第2讲空间几何体的表面积与体积考纲解读1.掌握与三视图相结合求解球、柱、锥、台的表面积和体积(重点)2会用相关计算公式,会处理棱柱、棱锥与球组合体的“接”“切”问题(难点)考向预测从近三年高考情况来看,本讲属于高考必考内容预测2021年会一如既往地对本讲内容进行考查,命题方式为:根据三视图,求几何体的表面积或体积;涉及与球有关的几何体的外接与内切问题题型以客观题为主,且试题难度不会太大,属中档题型1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(r1r2)l2.柱、锥、台和球的表面积和体积名称几何体表面积 体积柱体(棱柱和圆柱)S表
2、面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR31.概念辨析(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2S.()(2)锥体的体积等于底面面积与高之积()(3)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3a2.()(4)台体的体积可转化为两个锥体的体积之差()答案(1)(2)(3)(4)2.小题热身(1)一个球的表面积是16,那么这个球的体积为()A. B.C.16 D24答案B解析设此球的半径为R,则4R216,所以R2,其体积VR323.(2)
3、某几何体的三视图如图所示,则该几何体的表面积为()A.(9) B(92)C.(10) D(102)答案A解析由三视图可知,该几何体为一个圆柱挖去一个同底的圆锥,且圆锥的高是圆柱高的一半故该几何体的表面积S1242(9).(3)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为_答案解析易知,此多面体是由两个四棱锥拼接而成,其体积V2()21.(4)已知某棱台的上、下底面面积分别为6和24,高为2,则其体积为_答案28解析由已知得此棱台的体积V(624 )242228.题型 一空间几何体的表面积1.(2018全国卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面
4、截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12 B12C.8 D10答案B解析根据题意,可得截面是边长为2的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为2,所以其表面积为S2()22212.故选B.2(2019安徽省江南十校联考)如图,网格纸上的小正方形的边长为1,实线画出的是某几何体的三视图,其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为()A.20 B20C.20 D20答案B解析由三视图可得该几何体的直观图如图由已知得该几何体是由一个棱长为2的正方体挖去一个四分之一的圆柱及一个八分之的球体得到的,所以该几何体的表面积S622212522
5、420.故选B.3.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2 B4C.22 D5答案C解析根据三视图画出该空间几何体的立体图如图:SABC222;SABD1;SCBD1;SACD2,所以S表SABCSABDSCBDSACD222.故选C.三类几何体表面积的求法求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、
6、台体的表面积,再通过求和或作差,求出所给几何体的表面积已知某几何体的三视图如图所示,则该几何体的表面积为()A. B.C.13 D.答案C解析由三视图可知几何体为三棱台,作出直观图如图所示则CC平面ABC,上下底均为等腰直角三角形,ACBC,ACBC1,ACBCCC2,AB,AB2.棱台的上底面积为11,下底面积为222,梯形ACCA的面积为(12)23,梯形BCCB的面积为(12)23,过A作ADAC于点D,过D作DEAB,则ADCC2,DE为ABC斜边高的,DE,AE,梯形ABBA的面积为(2),几何体的表面积SS上底S下底S梯形ACCAS梯形BCCBS梯形ABBA23313.题型 二空间
7、几何体的体积角度1根据几何体的三视图计算体积1.陀螺是汉族民间最早的娱乐工具之一,也作陀罗,闽南语称作“干乐”,北方叫做“冰尜”或“打老牛”,陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成,从前的制作材料多为木头,现代多为塑料或铁制,玩耍时可用绳子缠绕用力抽绳,使其直立旋转;或利用发条的弹力使其旋转,如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为()A. B.33C.3299 D.33答案B解析依题意,该陀螺模型由一个四棱锥、一个圆柱以及一个圆锥拼接而成,故所求几何体的体积V44232332233,故选B.角度2根据几何体的直观图计算体积2.(2
8、019全国卷) 学生到工厂劳动实践,利用3D打印技术制作模型如图,该模型为长方体ABCDA1B1C1D1挖去四棱锥OEFGH后所得的几何体其中O为长方体的中心,E,F,G,H分别为所在棱的中点,ABBC6 cm,AA14 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为_g答案118.8解析由题知挖去的四棱锥的底面是一个菱形,对角线长分别为6 cm和4 cm,故V挖去的四棱锥46312(cm3)又V长方体664144(cm3),所以模型的体积为V长方体V挖去的四棱锥14412132(cm3),所以制作该模型所需原料的质量为1320.9118.8(g).
9、求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换1.(2019湖南省长沙一中、常德一中等六校联考)如图是一个几何体的三视图,且这个几何体的体积为8,则俯视图中三角形的高x等于()A.1 B2 C3 D4答案D解析该几何体的示意图为如图所示的四棱锥PABCD,故其体积V(24)2x8,解得x4.故选D.2.祖暅是我国齐梁时代的数学家
10、,他提出了一条原理:“幂势既同,则积不容异”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等则这两个几何体的体积相等该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年椭球体是椭圆绕其轴旋转所成的旋转体如图所示,将底面直径皆为2b,高皆为a的半椭球体及已被挖去了圆锥体的圆柱体放置于同一平面上以平行于平面的平面在距平面任意高度d处可横截得到S圆及S环两截面,可以证明S圆S环总成立,据此,短轴长为4 cm,长轴长为6 cm的椭球体的体积是_cm3.答案16解析因为总有S圆S环,所以半椭球体的体积为V圆柱V圆锥b2ab2ab2a.又2a6,2b4,即a3,b2
11、,所以椭球体的体积Vb2a22316(cm3).题型 三几何体与球的切、接问题1.已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB3,AC4,ABAC,AA112,则球O的半径为()A. B2 C. D3答案C解析解法一:如图,由球心作平面ABC的垂线,则垂足为BC的中点M.又AMBC,OMAA16,所以球O的半径ROA.解法二:将直三棱柱补形为长方体ABECA1B1E1C1,则球O是长方体ABECA1B1E1C1的外接球所以体对角线BC1的长为球O的直径因此2R13.故R.2.(2018全国卷)设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为9,
12、则三棱锥DABC体积的最大值为()A.12 B18 C24 D54答案B解析如图所示,点M为三角形ABC的重心,E为AC的中点,当DM平面ABC时,三棱锥DABC体积最大,此时,ODOBR4.SABCAB29,AB6,点M为三角形ABC的重心,BMBE2,在RtOMB中,有OM2.DMODOM426,(V三棱锥DABC)max9618.故选B.条件探究将本例中的三棱锥DABC满足的条件改为“AB为球O的直径,若该三棱锥的体积为,BC3,BD,CBD90”,则球O的体积为_.答案解析设A到平面BCD的距离为h,三棱锥的体积为,BC3,BD,CBD90,3h,h2,球心O到平面BCD的距离为1.设
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-470017.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
