分享
分享赚钱 收藏 举报 版权申诉 / 11

类型广东省珠海市普通高中2018届高考数学一轮复习模拟试题06.doc

  • 上传人:a****
  • 文档编号:474448
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:11
  • 大小:3.53MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广东省 珠海市 普通高中 2018 高考 数学 一轮 复习 模拟 试题 06
    资源描述:

    1、一轮复习数学模拟试题06满分150分,考试用时120分钟 第一部分 选择题(共40分)一、 选择题:本大题共8小题,每小题5分,满分40分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则( )A. B.C. D.2已知向量,则向量的夹角的余弦值为( )A B C D3设集合,那么“”是“”的( )A必要而不充分条件 B充分而不必要条件C充分必要条件 D既不充分也不必要条件4已知向量,且,则的值为( )A B C D5函数的最小正周期为( )A B C D6当时,函数的最大值和最小值分别是( )A, B, , ,7已知函数,的零点分别为,则的大小关系是( )A B C D8. 定

    2、义在上的函数若关于的方程恰好有5个不同的实数解,则( )A. B. C. D.1第二部分 非选择题(共110分)二、填空题:本大题共6小题,每小题5分,满分30分9在边长为1的等边三角形中, .10 .11已知为锐角,且则= .12函数的定义域为 13平面直角坐标系中,是坐标原点,已知两点,若点满足,且,则点的轨迹方程是 .14飞机的航线和山顶C在同一个铅锤平面内,已知飞机的高度保持在海拔(km),飞行员先在点A处看到山顶的俯角为,继续飞行(km)后在点B处看到山顶的俯角为,试用、表示山顶的海拔高度为 (km)三、解答题:本大题共6小题,满分80分解答须写出文字说明,证明过程或演算步骤15.(

    3、本题满分12分)叙述并证明余弦定理.16. (本题12分)已知集合,集合,集合(1)求从集合中任取一个元素是(3,5)的概率;(2)从集合中任取一个元素,求的概率;(3)设为随机变量,写出的分布列,并求.17. 第17题图(本题满分14分)如图所示的长方体中,底面是边长为的正方形,为与的交点,是线段的中点(1)求证:平面;(2)求证:平面;(3)求二面角的大小18(本题满分14分)设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知.(1)若是区间上的“凸函数”,求的值.(2)若当实数满足时,函数在上总为“凸函数”,求的最大值.19. (本题满分14分)在一个特

    4、定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由. 20(本题满分14分)已知函数(1) 当时,求函数的极值;(2) 若函数的图象与轴有且只有一个交点,求的取值范围.第三次测验答案BCAB CAAD9. 10.1 11. 12. 13.x-y-1=014. (或)15叙述

    5、并证明余弦定理。解 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积的两倍。或:在ABC中,a,b,c为A,B,C的对边,有 (4分)证法一 如图 即同理可证 (12分) 证法二 已知ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴,建立直角坐标系,则, 同理可证16(本小题满分12分)已知集合,集合,集合 (1)求从集合中任取一个元素是(3,5)的概率; (2)从集合中任取一个元素,求的概率; (3)设为随机变量,写出的分布列,并求。16古典概型解:(1)设从中任取一个元素是(3,5)的事件为B,则 所以从中任取一个元素是(3,5)的概

    6、率为 (4分)(2)设从中任取一个元素,的事件为,有 (4,6),(6,4),(5,5),(5,6),(6,5),(6,6) (4分) 则P(C)=,所以从中任取一个元素的概率为(3)可能取的值为2,3,4,5,6,7,8,9,10,11,12的分布列为23456789101112 (4分)第17题图17.如图所示的长方体中,底面是边长为的正方形,为与的交点,是线段的中点()求证:平面;()求证:平面;()求二面角的大小17解:()连接,如图,、分别是、的中点,是矩形,四边形是平行四边形, 2分平面,平面,平面 4分()连接,正方形的边长为,则, 6分在长方体中,平面,又平面,又,平面 8分(

    7、)在平面中过点作于,连结,平面,又平面, 9分,又,且,平面,而平面, 10分是二面角的平面角 12分在中,二面角的大小为 14分解法2(坐标法):()建立如图所示的空间直角坐标系连接,则点、,又点,且与不共线,又平面,平面,平面 4分(),即,又,平面 8分(),平面,为平面的法向量,为平面的法向量,与的夹角为,即二面角的大小为14分()(法三)设二面角的大小为,在平面内的射影就是,根据射影面积公式可得,二面角的大小为 14分18. 设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”。已知。(1)若是区间上的“凸函数”,求的值。(2)若当实数满足时,函数在上总为“

    8、凸函数”,求的最大值。19.在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C. (I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.解: (I)如图,AB=40,AC=10,由于,所以cos=由余弦定理得BC=所以船的行驶速度为(海里/小时).(II)解法一 如图所示,以A为原点建立平面直角坐标系,设点B、C的坐标

    9、分别是B(x1,y2), C(x1,y2),BC与x轴的交点为D.由题设有,x1=y1= AB=40,x2=ACcos,y2=ACsin所以过点B、C的直线l的斜率k=,直线l的方程为y=2x-40.又点E(0,-55)到直线l的距离d=所以船会进入警戒水域.解法二: 如图所示,设直线AE与BC的延长线相交于点Q.在ABC中,由余弦定理得,=.从而在中,由正弦定理得,AQ=由于AE=5540=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EP BC于点P,则EP为点E到直线BC的距离.在Rt中,PE=QEsin=所以船会进入警戒水域.20.已知函数(1)当时,求函数的极值;(2) 若函数的图象与轴有且只有一个交点,求的取值范围。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广东省珠海市普通高中2018届高考数学一轮复习模拟试题06.doc
    链接地址:https://www.ketangku.com/wenku/file-474448.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1