《全国百强校》东北师大附中高三数学第一轮复习导学案:不等式选讲(3)A.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国百强校
- 资源描述:
-
1、不等式选讲(2)(教案)A一、 基本知识点:(1).含有参数不等式的解法例1:解关于x的不等式 解:原不等式等价于 当即时 当即时 x-6当即时 xR。例2、解关于x的不等式 解:当即q(0,)时 x2或x1当即q=时 x当即q(,)时 1x0,即在(-1,1)上是增函数。故t的取值范围是.数学思想方法是解决数学问题的灵魂,同时它又离不开具体的数学知识在解决含参数不等式的恒成立的数学问题中要进行一系列等价转化因此,更要重视转化的数学思想(5)、能成立问题(部分成立)(存在性问题)若在区间上存在实数使不等式f(x)A成立,即f(x)A在区间上能成立, f(x) A;若在区间上存在实数使不等式f(
2、x)A成立, 即f(x)A在区间上能成立, f(x) 1 ,若0a1时 当m=1时 x当0m1时 当m0时 x0(8)、反证法:但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。其中,反证法是间接证明的一种基本方法。反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。具体地说,反证法不直接证明命题“若p则q”,而是先肯定命题的条件p,并否定命题的结论q,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。利用反证法证明不等式,一般
3、有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。例1、设二次函数,求证:中至少有一个不小于.证明:假设都小于,则 (1) 另一方面,由绝对值不等式的性质,有 (2) (1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理
4、、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?例2、设0 a, b, c , (1 - b)c , (1 - c)a ,则三式相乘:ab (1 - a)b(1 - b)c(1 - c)a 又0 a, b, c 1 同理:, 以上三式相乘: (1 - a)a(1 - b)b(1 - c)c 与矛盾原式成立(9)、不等式的证明方法之四:放缩法与贝努利不等式所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法。这种方法是证明不等式中的常用方法,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
