2021届高考数学复习 压轴题训练 椭圆(2)(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届高考数学复习 压轴题训练 椭圆2含解析 2021 高考 数学 复习 压轴 训练 椭圆 解析
- 资源描述:
-
1、椭圆一、单选题1动直线与椭圆有两个不同的交点,在椭圆上找一点使的面积最大,则的最大值是A1B2CD解:设,联立,得,得,当过点直线与动直线平行且与椭圆只有一个交点时,点到动直线距离取到最值(最大或最小),不妨设过点直线方程为,联立,整理得,则根据,可得,不妨取,则到直线的距离,令,则令,则当时,当,时,的最大值为故选:2已知椭圆与双曲线有公共焦点,为左焦点,为右焦点,点为它们在第一象限的一个交点,且,设,分别为椭圆双曲线离心率,则的最大值为ABCD解:设椭圆与双曲线的标准方程分别为:,且,设,则,解得:,化为:令,当且仅当时取等号故选:3设椭圆的右焦点为,椭圆上的两点、关于原点对称,且满足,则
2、椭圆的离心率的取值范围是A,B,C,D,解:作出椭圆的左焦点,由椭圆的对称性可知,四边形为平行四边形,又,即,故平行四边形为矩形,设,则在直角三角形中,得,得,令,得,又由,得,即,即,得,即,即,则,即,得得则椭圆的离心率的取值范围是,故选:4已知直线与椭圆相切于第一象限的点,且直线与轴、轴分别交于点、,当为坐标原点)的面积最小时,、是椭圆的两个焦点),则此时中的平分线的长度为ABCD解:由题意,切线方程为,直线与、轴分别相交于点、,当且仅当时,为坐标原点)的面积最小,设,则,由余弦定理可得,的面积,设中的平分线的长度为,则,故选:5已知点,在椭圆上,若点为椭圆的右顶点,且为坐标原点),则椭
3、圆的离心率的取值范围是AB,C,D解:由题意知,点,则,;又,代入椭圆方程中,整理得;令,;,(a),如图所示:,对称轴满足,即,;又,;则椭圆的离心率的取值范围是,故选:6已知,是椭圆的左右焦点,若上存在不同两点,使得,则该椭圆的离心率的取值范围为A,BC,D解:延长交椭圆于,根据椭圆的对称性,则,设直线的方程,联立,整理得:,则,由,则,解得:,由,整理得:,则,即,椭圆的离心率,椭圆的离心率的取值范围,方法二:利用椭圆的极坐标方程由,且,由,所以,整理得,其中,由,不重合,所以,解得,所以,椭圆的离心率的取值范围,故选:7已知点为椭圆的左顶点,为椭圆的右焦点,、在椭圆上,四边形为平行四边
4、形为坐标原点),过直线上一点作圆的切线,为切点,若面积的最小值大于,则椭圆的离心率的取值范围是ABCD解:因为四边形为平行四边形,所以,设点纵坐标为,代入椭圆的方程得,解得,则,解得,当,可得,所以直线的方程为,化简可得,所以即为点到直线的距离,所以,所以,整理得,故,所以,所以,所以舍去)或,所以的取值范围为,故选:8已知,是离心率为的椭圆的焦点,是椭圆上第一象限的点,若是的内心,是的重心,记与的面积分别为,则ABCD解:离心率为,则,设的坐标为,三角形的面积为,则,是的重心,即,设内切圆的半径为,则,则,即,即,则,则,即则,即,故选:9已知椭圆,直线过椭圆的左焦点且交椭圆于、两点,的中垂
5、线交轴于点,则的取值范围为ABCD解:由椭圆的方程:,可得左焦点,当直线的斜率为0时,则直线为轴,的中垂线为轴,这时与原点重合,这时,所以,当直线的斜率不存在时,的中垂线为轴,舍去,当直线的斜率不为0时,设直线的方程为,设,的坐标分别为,联立直线与椭圆的方程:,整理可得:,所以弦长,所以的中点坐标,所以直线的中垂线方程为:,令,可得,所以,所以,所以,综上所述的取值范围,故选:10已知,是椭圆的左、右焦点,且椭圆上存在一点,使得,若点,分别是圆和椭圆上的动点,则当椭圆的离心率取得最小值时,的最大值是ABCD解:若要满足椭圆上存在一点,使得,只需的最大值不小于即可,在三角形中,由余弦定理可得:,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
