高中数学新课标人教A版选修2-1:2.3《双曲线》(第三课时)课件 .ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线 高中数学新课标人教A版选修2-1:2.3双曲线第三课时课件 高中数学 新课 标人教 选修 2.3 第三 课时 课件
- 资源描述:
-
1、2.3 双曲线2.3.2 双曲线的简单几何性质(2)本节课主要学习双曲线的定义、直线与双曲线的位置关系、直线与双曲线的弦长.通过回顾双曲线的概念、方程和性质,复习直线与椭圆的位置关系等知识,巩固所学知识,充分调动学生学习的积极性和主动性.双曲线的第二定义作为了解内容,在实际教学中可以根据实际情况酌情处理,在普通班的教学中可以忽略不讲,直接讲例题1;例2研究了直线与双曲线的位置关系;例3讲的是高考的一个热点内容弦长公式问题。直线与双曲线的弦长公式问题(可以推广到直线与其它圆锥曲线的弦长公式问题).关于x轴、y轴、原点对称yxOA2B2A1B1.F1F2yB2A1A2 B1xO.F2F1A1(-a
2、,0),A2(a,0)B1(0,-b),B2(0,b)F1(-c,0)F2(c,0)F1(-c,0)F2(c,0)关于x轴、y轴、原点对称A1(-a,0),A2(a,0)无图形方程范围对称性顶点离心率渐进线关于x轴、y轴、原点对称图形方程范围对称性顶点离心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)关于x轴、y轴、原点对称渐进线.yB2A1A2 B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)1、“共渐近线”的双曲线0表示焦点在x轴上的双曲线;a0),求点M的轨迹.M解:设点M(x,y)到l的距离为d,则即化简
3、得(c2a2)x2 a2y2=a2(c2 a2)设c2a2=b2,(a0,b0)故点M的轨迹为实轴、虚轴长分别为2a、2b的双曲线.b2x2a2y2=a2b2即就可化为:M点M的轨迹也包括双曲线的左支.双曲线的第二定义双曲线的第二定义双曲线的第二定义平面内,若定点F不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e1)的点的轨迹是双曲线。定点F是双曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的离心率.对于双曲线是相应于右焦点F(c,0)的右准线.类似于椭圆是相应于左焦点F(-c,0)的左准线.xyoFlMFl点M到左焦点与左准线的距离之比也满足第二定义.想一想:中心在原点,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
