分享
分享赚钱 收藏 举报 版权申诉 / 22

类型2021年高考数学 考点22 正弦定理和余弦定理的应用必刷题 文(含解析).doc

  • 上传人:a****
  • 文档编号:494016
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:22
  • 大小:2.84MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021年高考数学 考点22 正弦定理和余弦定理的应用必刷题 文含解析 2021 年高 数学 考点 22 正弦 定理 余弦 应用 必刷题 解析
    资源描述:

    1、考点22 正弦定理和余弦定理的应用1在中,则的形状一定是( )A 等边三角形 B 等腰三角形 C 等腰直角三角形 D 直角三角形【答案】D 2我国古代著名的数学家刘徽著有海岛算经.内有一篇:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?” (参考译文:假设测量海岛,立两根标杆,高均为5步,前后相距1000步,令前后两根标杆和岛在同一直线上,从前标杆退行123 步, 人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行127步, 人的视

    2、线从地面过标杆顶恰好观测到岛峰,问岛高多少? 岛与前标杆相距多远?)(丈、步为古时计量单位,三丈=5步).则海岛高度为( )A 1055步 B 1255步 C 1550步 D 2255步【答案】B【解析】如图,设岛高步,与前标杆相距步,则有解得步,即海岛高度为步,故选B.3已知锐角的三个内角的对边分别为,若,则的值范围是( )A B C D 【答案】D 4如图所示,设,两点在河的两岸,一测量者在所在的同侧河岸边选定一点,测出的距离为,后,就可以计算出,两点的距离为( )A B C D 【答案】A 5位于A处的雷达观测站,发现其北偏东45,与相距海里的处有一货船正以匀速直线行驶,20分钟后测得该

    3、船只位于观测站A北偏东的C处,海里在离观测站A的正南方某处D,. (1)求; (2)求该船的行驶速度v(海里/小时).【答案】;【解析】(1), 6风景秀美的宝湖畔有四棵高大的银杏树,记作A,B,P,Q,湖岸部分地方围有铁丝网不能靠近欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,PAB75,QAB45,PBA60,QBA90,如图所示则P,Q两棵树和A,P两棵树之间的距离各为多少?【答案】【解析】PAB中,APB180(7560)45,由正弦定理得AP50.QAB中,ABQ90,AQ100,PAQ754530,由余弦定理得PQ2(50)2(100)2250

    4、100cos305000,PQ50.因此,P,Q两棵树之间的距离为50 m,A,P两棵树之间的距离为50 m.7设的内角所对的边分别是,且是与的等差中项()求角;()设,求周长的最大值【答案】(1)60;(2)6. 8如图,ABC是等边三角形,D是BC边上的动点(含端点),记BAD,ADC. (1)求的最大值;(2)若BD1,求ABD的面积【答案】(1)当,即D为BC中点时,原式取最大值;(2).【解析】(1)由ABC是等边三角形,得,0,故2coscos=2coscossin,故当,即D为BC中点时,原式取最大值(2)由cos ,得sin ,故sin sinsin coscos sin,由正

    5、弦定理,故AB BD1 ,故SABDABBDsin B9已知中,角所对的边分别为且 (1)求角的大小;(2)若,求面积的最大值。【答案】;(2) 10的内角,所对的边分别为,且的面积.(1)求;(2)若、成等差数列,的面积为,求.【答案】(1);(2). 11在中, 是边的中线, ,且的面积为.(1)求的大小及的值;(2)若,求的长.【答案】(1) , . (2) .【解析】 12如图,在四边形中,.()求的长; ()求证: . 13如图,一山顶有一信号塔(所在的直线与地平面垂直),在山脚处测得塔尖的仰角为,沿倾斜角为的山坡向上前进米后到达处,测得的仰角为.(1)求的长;(2)若, , , ,

    6、求信号塔的高度.【答案】(1) ;(2) .【解析】(1)在中, , , .由正弦定理, ;(2)由(1)及条件知, , , , .由正弦定理得.14在中,内角,所对的边分别是,已知()求;()当时,求的取值范围【答案】();(). 15已知的内角的对边分别为,若,.()求;()当的面积取最大值时,求的值【答案】(1);(2). 16在中,点在边上,且.(1)若,求;(2)若,求的周长.【答案】(1);(2).【解析】解法一:由题意可得,则.结合余弦定理有. (1)在中,由余弦定理,解方程可得,所以,在中,由正弦定理可得,结合大边对大角可得 ,则 .在中,由正弦定理,由余弦定理, 又因为,所以

    7、所以,所以 17若满足,,的有两个,则实数的取值范围为_【答案】(3,6) 18如图,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高_.【答案】150 19在中,内角的对边分别为,若,且的面积为,则_【答案】【解析】因为的面积为, 20如图,九章算术中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(丈尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为_尺【答案】【解析】如图,已知(尺),(尺), ,解得,因此,解得,故折断后的竹干高为尺.21设锐角三个内角所对的边分别为,若,则的取值范围为_【答案】,的取值范围为 X*K22如图,在中,分别为的中点,若,则_. 【答案】 ,据此可得:.23在中,点在边上,平分,是边上的中点,则_.【答案】 24四边形中, , ,设、的面积分别为、,则当取最大值时, _【答案】【解析】设, ,当时,取得最大值,故填 25我国南宋著名数学家秦九韶在他的著作数书九章卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为里, 里, 里,假设里按米计算,则该三角形沙田外接圆的半径为_米.【答案】

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021年高考数学 考点22 正弦定理和余弦定理的应用必刷题 文(含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-494016.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1