分享
分享赚钱 收藏 举报 版权申诉 / 11

类型2021新高考数学新课程一轮复习学案:第十章 第4讲 随机事件的概率 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:495356
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:11
  • 大小:346.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021新高考数学新课程一轮复习学案:第十章 第4讲随机事件的概率 WORD版含解析 2021 新高 数学 新课程 一轮 复习 第十 随机 事件 概率 WORD 解析
    资源描述:

    1、第4讲随机事件的概率考纲解读1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.会用频率估计概率,掌握概率的基本性质(重点)3.了解两个互斥事件的概率加法公式(难点)考向预测从近三年高考情况来看,本讲内容一般不作独立考查,预测2021年将会考查:对立、互斥与古典概型结合考查随机事件概率的计算;随机事件与统计图表相结合考查用频率估计概率试题难度不大,属中、低档题型.1事件的分类2频率和概率(1)在相同的条件S下重复n次实验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的

    2、随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率3事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)BA(或AB)相等关系若BA且AB,那么称事件A与事件B相等AB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)AB(或AB)续表定义符号表示交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件

    3、,那么称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件AB且ABU4概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)概率的加法公式如果事件A与事件B互斥,则P(AB)P(A)P(B)(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)1P(B)1概念辨析(1)“方程x2x10有两个实根”是不可能事件()(2)频率随着试验次数变化而变化,而概率是一个常数()(3)两个事件的和事件发生是指两个事件同时发生()(4)对于任意事件A,B,总有公式P(AB)P(A)P

    4、(B)()(5)对立事件一定是互斥事件,互斥事件不一定是对立事件()答案(1)(2)(3)(4)(5)2小题热身(1)现有3个红球和2个白球,从中任选2个球,事件“至少有1个白球”与事件“全是红球”()A是互斥事件,不是对立事件B是对立事件,不是互斥事件C既是互斥事件,也是对立事件D既不是互斥事件也不是对立事件答案C解析3个红球和2个白球,从中任选2个球有以下可能:全是红球;恰有1个白球;全是白球,所以“至少有1个白球”与“全是红球”既是互斥事件,也是对立事件(2)给出下列三个命题,其中正确的命题有_个有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;做7次抛硬币的试验,结

    5、果3次出现正面,因此正面出现的概率是;随机事件发生的频率就是这个随机事件发生的概率答案0解析由概率的概念,知从中任取100件,可能有10件次品,并不是必有10件次品,则是假命题;抛硬币时出现正面的概率是,不是,则是假命题;频率和概率不是同一个概念,则是假命题综上可知,正确的命题有0个(3)从一箱产品中随机抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为_答案0.35解析“抽到的不是一等品”与“抽到一等品”是对立事件,所以抽到的不是一等品的概率P1P(A)10.650.35.(4)刘老师在

    6、某大学连续3年主讲经济学院的高等数学,下表是刘老师这门课3年来学生的考试成绩分布:成绩人数90分以上428089分1727079分2406069分865059分5250分以下8经济学院一年级的学生王小明下学期将选修刘老师的高等数学课,用已有的信息估计他得以下分数的概率:90分以上的概率是_;不及格(60分及以上为及格)的概率是_答案0.070.1解析用已有的信息估计王小明得90分以上的概率为0.07,不及格的概率为0.1.题型一互斥、对立事件的判断1有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,任意两人不能同一方向事件“甲向南”与事件“乙向南”是()A互

    7、斥但非对立事件 B对立事件C相互独立事件 D以上都不对答案A解析“甲向南”与“乙向南”不会同时发生,但有可能都不发生,所以这两个事件互斥但不对立2从1,2,3,4,5中有放回地依次取出两个数,则下列各对事件是互斥而不是对立事件的是()A恰有1个是奇数和全是奇数B恰有1个是偶数和至少有1个是偶数C至少有1个是奇数和全是奇数D至少有1个是偶数和全是偶数答案A解析从1,2,3,4,5中有放回地依次取出两个数,共有三种情况:A两个奇数,B一个奇数,一个偶数,C两个偶数,且两两互斥,A中两个事件是互斥事件而不是对立事件;B,C,D中两个事件不互斥.判断互斥、对立事件的两种方法(1)定义法判断互斥事件、对

    8、立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,在任何一次试验中,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.(2)集合法由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集. 某小组有3名男生和2名女生,从中选2名同学去参加演讲比赛,下列有4个事件:恰有1名男生和恰有2名男生;至少有1名男生和至少有1名女生;至少有1名男生和全是男生;至少有1名男生和全是女生,其中是互斥事件的是_(填序号).答案解析对于事件,恰有1名男生是1男1女和恰有2名男生互斥;对于事件,至

    9、少有1名男生和至少有1名女生两者有可能同时发生,所以不是互斥事件;对于,至少有1名男生和全是男生也有可能同时发生,所以不是互斥事件;对于事件,至少有1名男生和全是女生不可能同时发生,是互斥事件.题型二随机事件的频率与概率1.(2019石家庄模拟)袋中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以

    10、下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.答案C解析由题意,得随机数的前两位只能出现1或2中的一个,第三位出现另外一个,所以满足条件的随机数为142,112,241,142,故恰好第三次就停止摸球的概率为.故选C.2.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10道智力题,每道题10分,然后作了统计,结果如表.贫困地区参加测试的人数3050100200500800得60分以上的人数162752104256402得60分以上的频率发达地

    11、区参加测试的人数3050100200500800得60分以上的人数172956111276440得60分以上的频率(1)计算两地区参加测试的儿童得60分以上的频率(保留两位小数);(2)根据频率估计两地区参加测试的儿童得60分以上的概率.解(1)贫困地区表格从左到右分别为0.53,0.54,0.52,0.52,0.51,0.50;发达地区表格从左到右分别为0.57,0.58,0.56,0.56,0.55,0.55.(2)根据频率估计贫困地区参加测试的儿童得60分以上的概率为0.52,发达地区参加测试的儿童得60分以上的概率为0.56.1.概率与频率的关系2.随机事件概率的求法对一批衬衣进行抽样

    12、检查,结果如表:抽取件数n50100200500600700800次品件数m021227273540次品率(1)求次品出现的频率(次品率);(2)记“任取一件衬衣是次品”为事件A,求P(A);(3)为了保证买到次品的顾客能够及时更换,销售1000件衬衣,至少需进货多少件?解(1)次品率依次为0,0.02,0.06,0.054,0.045,0.05,0.05.(2)由(1),知出现次品的频率在0.05附近摆动,故P(A)0.05.(3)设需进货x件,则x(10.05)1000,解得x1053,故至少需进货1053件.题型三互斥事件与对立事件的概率角度1互斥事件概率公式的应用1.(2018全国卷)

    13、若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B0.4C.0.6 D0.7答案B解析设事件A为只用现金支付,事件B为只用非现金支付,事件C为既用现金支付也用非现金支付,则P(A)P(B)P(C)1,因为P(A)0.45,P(C)0.15,所以P(B)0.4.故选B.角度2对立事件概率公式的应用2.某班选派5人参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数/人012345概率0.10.16xy0.2z(1)若获奖人数不超过2人的概率为0.56,求x的值;(2)若获奖人数最多4人的概率为0.96,最少3人的

    14、概率为0.44,求y,z的值.解记事件“在数学竞赛中,有k人获奖”为Ak(kN,k5),则事件Ak彼此互斥.(1)获奖人数不超过2人的概率为0.56,P(A0)P(A1)P(A2)0.10.16x0.56.解得x0.3.(2)由获奖人数最多4人的概率为0.96,得P(A5)10.960.04,即z0.04.由获奖人数最少3人的概率为0.44,得P(A3)P(A4)P(A5)0.44,即y0.20.040.44,解得y0.2.求复杂的互斥事件概率的方法(1)直接法(2)间接法(正难则反)1.(2019天津红桥一模)经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:排队人数0

    15、12345概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是_.答案0.74解析由已知条件可得,至少有2人排队的概率是0.30.30.10.040.74.2.某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).解(1)由已知,得25y1055,x3045,所以x15,y20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”和事件“该顾客一次购物的结算时间为3分钟”,将频率视为概率,得P(A1),P(A2).P(A)1P(A1)P(A2)1.故一位顾客一次购物的结算时间不超过2分钟的概率为.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021新高考数学新课程一轮复习学案:第十章 第4讲 随机事件的概率 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-495356.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1