2021高考数学(理)统考版二轮复习学案:板块3 回扣7 解析几何 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学理统考版二轮复习学案:板块3 回扣7 解析几何 WORD版含解析 2021 高考 数学 统考 二轮 复习 板块 回扣 WORD 解析
- 资源描述:
-
1、解析几何回归教材1直线方程的五种形式(1)点斜式:yy1k(xx1)(直线过点P1(x1,y1),且斜率为k,不包括y轴和平行于y轴的直线)(2)斜截式:ykxb(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线)(3)两点式:(直线过点P1(x1,y1),P2(x2,y2),且x1x2,y1y2,不包括坐标轴和平行于坐标轴的直线)(4)截距式:1(a,b分别为直线的横、纵截距,且a0,b0,不包括坐标轴、平行于坐标轴和过原点的直线)(5)一般式:AxByC0(其中A,B不同时为0)2直线的两种位置关系当不重合的两条直线l1和l2的斜率存在时:(1)两直线平行l1l2k1k2
2、.(2)两直线垂直l1l2k1k21.【易错提醒】当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略3三种距离公式(1)A(x1,y1),B(x2,y2)两点间的距离|AB|.(2)点到直线的距离d(其中点P(x0,y0),直线方程为AxByC0)(3)两平行线间的距离d(其中两平行线方程分别为l1:AxByC10,l2:AxByC20且C1C2)【易错提醒】应用两平行线间距离公式时,注意两平行线方程中x,y的系数应对应相等4圆的方程的两种形式(1)圆的标准方程:(xa)2(yb)2r2.(2)圆的一般方程:x2y2DxEyF0(D2E24F0)5直线与圆、圆与圆的位
3、置关系及判断方法(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法6与圆的切线有关的结论(1)过圆x2y2r2上一点P(x0,y0)的切线方程为x0xy0yr2.(2)过圆(xa)2(yb)2r2上一点P(x0,y0)的切线方程为(x0a)(xa)(y0b)(yb)r2.(3)过圆x2y2r2外一点P(x0,y0)作圆的两条切线,切点为A,B,则过A,B两点的直线方程为x0xy0yr2.(4)过圆x2y2DxEyF0(D2E24F0)外一点P(x0,y0)引圆的切线,切点为T,则|PT|.(5)过圆C:
4、(xa)2(yb)2r2(r0)外一点P(x0,y0)作圆C的两条切线,切点分别为A,B,则切点弦AB所在的直线方程为(x0a)(xa)(y0b)(yb)r2.(6)若圆的方程为(xa)2(yb)2r2(r0),则过圆外一点P(x0,y0)的切线长d.7圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义|PF1|PF2|2a(2a|F1F2|)|PF1|PF2|2a(2ab0)1(a0,b0)y22px(p0)图形几何性质范围|x|a,|y|b|x|ax0顶点(a,0),(0,b)(a,0)(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(c,0)几何性质轴长轴长2a,短轴长2
5、b实轴长2a,虚轴长2b离心率e(0e1)e(e1)e1准线x渐近线yx8.直线与圆锥曲线的位置关系判断方法:通过解直线方程与圆锥曲线方程联立得到的方程组进行判断弦长公式:|AB|x1x2|,或|AB|y1y2|.9椭圆中焦点三角形的相关结论由椭圆上一点与两焦点所构成的三角形称为焦点三角形解决焦点三角形问题常利用椭圆的定义和正、余弦定理以椭圆1(ab0)上一点P(x0,y0)(y00)和焦点F1(c,0),F2(c,0)为顶点的PF1F2中,若F1PF2,则(1)|PF1|aex0,|PF2|aex0(焦半径公式),|PF1|PF2|2a.(e为椭圆的离心率)(2)4c2|PF1|2|PF2|
6、22|PF1|PF2|cos .(3)S|PF1|PF2|sin b2tanc|y0|,当|y0|b,即P为短轴端点时,SPF1F2取得最大值,为bc.(4)焦点三角形的周长为2(ac)10双曲线的方程与渐近线方程的关系(1)若双曲线的方程为1(a0,b0),则渐近线的方程为0,即yx.(2)若渐近线的方程为yx(a0,b0),即0,则双曲线的方程可设为(0)(3)若所求双曲线与双曲线1(a0,b0)有公共渐近线,其方程可设为(0,焦点在x轴上;0,焦点在y轴上)11双曲线常用的结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|P
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-522599.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
