数学导航2016届高考数学大一轮复习第九章概率同步练习文.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 导航 2016 高考 一轮 复习 第九 概率 同步 练习
- 资源描述:
-
1、【数学导航】2016届高考数学大一轮复习 第九章 概率同步练习 文第一节随机事件的概率1了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别2了解两个互斥事件的概率加法公式1概率与频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A)2事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或
2、称事件A包含于事件B)BA(或AB)相等关系若BA且AB,那么称事件A与事件B相等AB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,那么称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件AB且AB3.概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率:P(A)1.(3)不可能事件的概率:P(A)0.(4
3、)概率的加法公式如果事件A与事件B互斥,则P(AB)P(A)P(B)(5)对立事件的概率若事件A与事件B互为对立事件,则AB为必然事件P(AB)1,P(A)1P(B)集合法判断互斥事件与对立事件(1)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集1判断下面结论是否正确(请在括号中打“”或“”)(1)事件发生频率与概率是相同的()(2)随机事件和随机试验是一回事()(3)在大量重复试验中,概率是频率的稳定值()(4)两个事件的和事件是指两个事件都得发生()答案:(1)(2)(3)(4)2甲:A1,A
4、2是互斥事件;乙:A1,A2是对立事件,那么()A甲是乙的充分但不必要条件B甲是乙的必要但不充分条件C甲是乙的充要条件D甲既不是乙的充分条件,也不是乙的必要条件解析:两个事件是对立事件,则它们一定互斥,反之不一定成立答案:B3从一箱产品中随机抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.7,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为()A0.7B0.2C0.1D0.3解析:“抽到的不是一等品”的对立事件是“抽到一等品”,事件A抽到一等品,P(A)0.7,“抽到的不是一等品”的概率是10.70.3.选D答案:D4(1)某人投篮3次,其
5、中投中4次是_事件;(2)抛掷一枚硬币,其落地时正面朝上是_事件;(3)三角形的内角和为180是_事件解析:(1)共投篮3次,不可能投中4次;(2)硬币落地时正面和反面朝上都有可能;(3)三角形的内角和等于180.答案:(1)不可能(2)随机(3)必然5在人民商场付款处排队等候付款的人数及其概率如下:排队人数012345人以上概率0.10.160.30.30.10.04则至少有两人排队的概率为_答案:0.74随机事件的关系1下列命题:将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件若事件A与B互为对立事件,则事件A与B为互斥事件若事件A与B为
6、互斥事件,则事件A与B互为对立事件若事件A与B互为对立事件,则事件AB为必然事件其中,真命题是()ABCD解析:对,将一枚硬币抛两次,共出现正,正,正,反,反,正,反,反四种结果,则事件M与N是互斥事件,但不是对立事件,故错对,对立事件首先是互斥事件,故正确对,互斥事件不一定是对立事件,如中两个事件,故错对,事件A、B为对立事件,则在一次试验中A、B一定有一个要发生,故正确答案:B2设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)P(B)1”,则甲是乙的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解析:若事件A与事件B是对立事件,则AB为必然事件,再由
7、概率的加法公式得P(A)P(B)1.投掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A),P(B),满足P(A)P(B)1,但A,B不是对立事件答案:A理解互斥事件与对立事件应注意的问题(1)对互斥事件要把握住不能同时发生,而对于对立事件除不可能同时发生外,其并事件应为必然事件,这可类比集合进行理解;(2)具体应用时,可把试验结果写出来,看所求事件包含哪几个试验结果,从而判断所给事件的关系随机事件的概率与频率1某城市2015年的空气质量状况如下表所示:污染指数T3060100110130140概率P其中污染指数T50时,空气质量为优;50T100时,空气质量为良
8、;100T150时,空气质量为轻微污染,则该城市2015年空气质量达到良或优的概率为_解析:由题意可知2015年空气质量达到良或优的概率为P.答案:2(2014陕西卷)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率解析:(1)
9、设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)0.15,P(B)0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.11 000100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.212024辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,由频率估计概率得P(C)0.24. 1.概率与频率的关系频率反映了一个随机事件
10、出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值2随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率注意概率的定义是求一个事件的概率的基本方法互斥事件、对立事件的概率某战士射击一次,问:(1)若中靶的概率为0.95,则不中靶的概率为多少?(2)若命中10环的概率是0.27,命中9环的概率为0.21,命中8环的概率为0.24,则至少命中8环的概率为多少?不够9环的概率为多少?解析:(1)设中靶为事件A,则不中靶为,则由对立事件的概率公式
11、可得:P()1P(A)10.950.05.(2)设命中10环为事件B,命中9环为事件C,命中8环为事件D,由题意知P(B)0.27,P(C)0.21,P(D)0.24.记至少命中8环为事件E,则P(E)P(BCD)P(B)P(C)P(D)0.270.210.240.72.记至少命中9环为事件F,则P(F)P(BC)P(B)P(C)0.270.210.48.故不够9环为,则P()1P(F)10.480.52.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:医生人数012345人及以上概率0.10.16xy0.2z(1)若派出医生不超过2人的概率为0.56,求x的值;(2)若派出医生最多4人
12、的概率为0.96,最少3人的概率为0.44,求y、z的值解析:(1)由派出医生不超过2人的概率为0.56,得0.10.16x0.56,x0.3.(2)由派出医生最多4人的概率为0.96,得0.96z1,z0.04.由派出医生最少3人的概率为0.44,得y0.20.040.44,y0.440.20.040.2.A级基础训练1(2014湖北襄阳模拟)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向事件“甲向南”与事件“乙向南”是()A互斥但非对立事件B对立事件C相互独立事件D以上都不对解析:由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,
13、故是互斥事件,但不是对立事件,故选A答案:A2(2014河南安阳模拟)从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的产品不是一等品”的概率为()A0.7B0.65C0.35D0.5解析:“抽到的产品不是一等品”与事件A是对立事件,所求概率P1P(A)0.35.答案:C3围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是()ABCD1解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒
14、恰好是同一色”为事件C,则CAB,且事件A与B互斥所以P(C)P(A)P(B).即任意取出2粒恰好是同一色的概率为.答案:C4(2014山西重点中学联考)从装有5个红球和3个白球的口袋中任取3个球,那么互斥而不对立的事件是()A至少有一个红球与都是红球B至少有一个红球与都是白球C至少有一个红球与至少有一个白球D恰有一个红球与恰有两个红球解析:对于A,两事件是包含关系,对于B,两事件是对立事件,对于C,两事件可能同时发生答案:D5掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A发生的概率为()ABCD解析:由于事件总数为6,故P(A).P(
15、B),从而P()1P(B)1,且A与互斥,故P(A)P(A)P().故选C答案:C6向三个相邻的军火库各投一枚炸弹击中第一个军火库的概率是0.025,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为_解析:设A、B、C分别表示击中第一、二、三个军火库,易知事件A、B、C彼此互斥,且P(A)0.025,P(B)P(C)0.1.设D表示军火库爆炸,则P(D)P(A)P(B)P(C)0.0250.10.10.225.所以军火库爆炸的概率为0.225.答案:0.2257(2014河北石家庄模拟)从一副混合后的扑克牌(52张)中,随机抽取1张事件A为“抽得红桃K”,
16、事件B为“抽得黑桃”,则P(AB)_(结果用最简分数表示)解析:P(A),P(B),P(AB)P(A)P(B).答案:8若A,B互为对立事件,其概率分别为P(A),P(B),且x0,y0,则xy的最小值为_解析:由题意可知1,则xy(xy)59,当且仅当,即x2y时等号成立答案:99根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地1位车主甲、乙两种保险都不购买的概率解析:记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购
17、买甲、乙两种保险中的1种;D表示事件:该车主甲、乙两种保险都不购买(1)由题意得P(A)0.5,P(B)0.3,又CAB,所以P(C)P(AB)P(A)P(B)0.50.30.8.(2)因为D与C是对立事件,所以P(D)1P(C)10.80.2.10一盒中装有大小和质地均相同的12个小球,其中5个红球,4个黑球,2个白球,1个绿球从中随机取出1球,求:(1)取出的小球是红球或黑球的概率;(2)取出的小球是红球或黑球或白球的概率解析:记事件A任取1球为红球,事件B任取一球为黑球,事件C任取1球为白球,事件D任取一球为绿球,P(A),P(B),P(C),P(D),(1)取出的小球是红球或黑球的概率
18、为P1P(AB)P(A)P(B).(2)法一:取出的小球是红球或黑球或白球的概率为P2P(ABC)P(A)P(B)P(C).法二:“取出的小球是红球或黑球或白球”与“取出的小球为绿球”互为对立事件,故所求的概率为P21P(D)1.B级能力提升1若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)2a,P(B)4a5,则实数a的取值范围是()ABCD解析:由题意可知a.答案:D2如果事件A与B是互斥事件,且事件AB发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为_解析:P(A)P(B)0.64,P(B)3P(A),P(A)0.16.答案:0.163黄种
19、人人群中各种血型的人数所占的比例见下表:血型ABABO该血型的人数所占的比例28%29%8%35%已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血,小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解析:(1)任找一人,其血型为A,B,AB,O型血分别记为事件A,B,C,D,它们是互斥的由已知,有P(A)0.28,P(B)0.29,P(C)0.08,P(D)0.35.因为B,O型血可以输给B型血的人,故“任找一个人,其血可以输给小明”
20、为事件BD,根据概率加法公式,得P(BD)P(B)P(D)0.290.350.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件AC,且P(AC)P(A)P(C)0.280.080.36.4袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)“3只球颜色全相同”的概率(2)“3只球颜色不全相同”的概率解析:(1)“3只球颜色全相同”包括“3只全是红球”(事件A),“3只全是黄球”(事件B),“3只全是白球”(事件C),且它们彼此互斥,故“3只球颜色全相同”这个事件可记为ABC,又P(A)P(B)P(C),故P(ABC)P(A)
21、P(B)P(C).(2)记“3只球颜色不全相同”为事件D,则事件为“3只球颜色全相同”,又P()P(ABC).所以P(D)1P()1,故“3只球颜色不全相同”的概率为.第二节古典概型1理解古典概型及其概率计算公式2会计算一些随机事件所包含的基本事件数及事件发生的概率1基本事件的特点(1)任何两个基本事件是互斥的(2)任何事件(除不可能事件)都可以表示成基本事件的和2古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型-3.古典概型的概率公式P(A).基本事件的求法(1)枚举法:适合给定的基本事件个数较少且易一一列举出的(2)树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确
22、定基本事件时(x,y)可以看成是有序的,如(1,2)与(2,1)不同有时也可以看成是无序的,如(1,2)(2,1)相同1判断下面结论是否正确(请在括号中打“”或“”)(1)在古典概型中,如果事件A中基本事件构成集合A,所有的基本事件构成集合I,则事件A的概率为.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件()答案:(1)(2)2一个口袋内装有2个白球和3个黑球,则先摸出1个白球后放回,再摸出1个白球的概率是()ABCD解析:先摸出1个白球后放回,再摸出1个白球的概率实质上就是第二次摸到白球的概率,因为袋内装有2个白球和3个黑球,因此概率为.答案:C
23、3(2014陕西卷)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()ABBD解析:设正方形的四个顶点分别是A,B,C,D,中心为O,从这5个点中,任取两个点的事件分别为AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,共有10种,其中只有顶点到中心O的距离小于正方形的边长,分别是AO,BO,CO,DO,共有4种故满足条件的概率P.故选B答案:B4(2014江苏卷)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_解析:从4个数中随机取2个数,共有6种取法,满足乘积为6的有(1,6)(2,3)两种情况,因此概率为P
24、.答案:5在集合A2,3中随机取一个元素m,在集合B1,2,3中随机取一个元素n,得到点P(m,n),则点P在圆x2y29内部的概率为_解析:点P(m,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x2y29的内部,所求概率为.答案:简单古典概型的概率1(2014江西卷)掷两颗均匀的骰子,则点数之和为5的概率等于()ABCD解析:掷两颗骰子,点数有以下情况:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(
25、3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,其中点数和为5的有(1,4),(2,3),(3,2),(4,1),共4种,故所求概率为.答案:B2(2014天津卷)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母列
26、举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率解析:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为A,B,A,C,A,X,A,Y,A,Z,B,C,B,X,B,Y,B,Z,C,X,C,Y,C,Z,X,Y,X,Z,Y,Z,共15种(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为A,Y,A,Z,B,X,B,Z,C,X,C,Y,共6种因此,事件M发生的概率P(M).求古典概型概率的基本步骤(1)算出所有基本事件的个数n.(2)求出事件A包含的所有基本事件数m.(3)代入公式P(A),求出P(A)较复杂的
27、古典概型的概率(2014四川卷)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足abc”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率解析:(1)由题意,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3)(1,2,1)(1,2,2) (1,2,3)(1,3,1)(1,3,2)(1,3,3)(2,1,1)(2,1,2)(2,1,3)(2,2,1)(2,2,2)(2,2,3)(2,3,1)(2,3,2)(2,3,3)(
28、3,1,1)(3,1,2)(3,1,3)(3,2,1)(3,2,2)(3,2,3)(3,3,1)(3,3,2)(3,3,3),共27种设“抽取的卡片上的数字满足abc”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种所以P(A).因此,“抽取的卡片上的数字满足abc”的概率为.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B则事件包括(1,1,1),(2,2,2),(3,3,3),共3种所以P(B)1P()1.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.1一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两
29、个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求nm2的概率解析:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个因此所求事件的概率P.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,对一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
医学考试-外科主治医师(基础知识)模拟试卷58.pdf
