云南省昆明市第八中学2020-2021学年度高二数学上学期期中试题 理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省昆明市第八中学2020-2021学年度高二数学上学期期中试题 理含解析 云南省 昆明市 第八 中学 2020 2021 学年度 数学 学期 期中 试题 解析
- 资源描述:
-
1、云南省昆明市第八中学2020-2021学年度高二数学上学期期中试题 理(含解析)考试时间:120分钟 满分:150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知命题:,总有,则为( )A. ,使得B. ,使得C. ,总有D. ,使得【答案】B【解析】【分析】本题可直接利用全称命题的否定是特称命题来得出结果.【详解】因为全称命题的否定是特称命题,命题:,总有,所以:,使得,故选:B.【点睛】本题考查含有一个量词的命题的否定,全称命题的否定是特称命题,特称命题的否定是全称命题,考查推理能力,是简单题.2. “二万五千里长征”是19
2、34年10月到1936年10月中国工农红军进行的一次战略转移,是人类历史上的伟大奇迹,向世界展示了中国工农红军的坚强意志,在期间发生了许多可歌可泣的英雄故事.在中国共产党建党周年之际,某中学组织了“长征英雄事迹我来讲”活动,已知该中学共有高中生名,用分层抽样的方法从该校高中学生中抽取一个容量为的样本参加活动,其中高三年级抽了人,高二年级抽了人,则该校高一年级学生人数为( )A. B. C. D. 【答案】C【解析】【分析】先计算高一年级抽取的人数,然后计算抽样比,再计算高一年级的总人数.【详解】因为用分层抽样的方法从某校学生中抽取一个容量为的样本,其中高三年级抽人,高二年级抽人,所以高一年级要
3、抽取人,因为该校高中学共有名学生,所以各年级抽取的比例是,所以该校高一年级学生人数为人,选C.【点睛】本题考查了分层抽样,属于简单题型.3. 已知椭圆(ab0)的离心率为,则A. a2=2b2B. 3a2=4b2C. a=2bD. 3a=4b【答案】B【解析】【分析】由题意利用离心率的定义和的关系可得满足题意的等式.【详解】椭圆的离心率,化简得,故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识基本运算能力的考查.4. 某兴趣小组有5名学生,其中有3名男生和2名女生,现在要从这5名学生中任选2名学生参加活动,则选中的2名学生的性别相同的概率是( )A. B. C. D.
4、 【答案】A【解析】【分析】由题意结合古典概型计算公式和排列组合公式计算可得满足题意的概率值.【详解】由题意可知,选中的2名学生的性别相同的概率是:.故选A.【点睛】本题主要考查古典概型计算公式,排列组合的应用等知识,意在考查学生的转化能力和计算求解能力.5. 2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )A. 甲的化学成绩领
5、先年级平均分最多.B. 甲有2个科目的成绩低于年级平均分.C. 甲的成绩最好的前两个科目是化学和地理.D. 对甲而言,物理、化学、地理是比较理想的一种选科结果.【答案】A【解析】【分析】根据雷达图,对四个选项逐个分析,可选出答案.【详解】根据雷达图,可知物理成绩领先年级平均分最多,即A错误;甲的政治、历史两个科目的成绩低于年级平均分,即B正确;甲的成绩最好的前两个科目是化学和地理,即C正确;对甲而言,物理成绩比年级平均分高,历史成绩比年级平均分低,而化学、生物、地理、政治中优势最明显的两科为化学和地理,故物理、化学、地理的成绩是比较理想的一种选科结果,即D正确.故选:A.【点睛】本题考查统计知
6、识,涉及到雷达图的识别及应用,考查学生识图能力、数据分析能力,是一道容易题.6. 已知双曲线的虚轴长是实轴长的2倍,则双曲线的标准方程为( )A. B. C. D. 【答案】D【解析】【分析】由题意得到关于m的方程,解方程求得m的值即可确定双曲线方程.【详解】由题意可得:,则实轴长为:,虚轴长为,由题意有:,解得:,代入可得双曲线方程为.本题选择D选项.【点睛】本题主要考查双曲线方程的求解,意在考查学生的转化能力和计算求解能力.7. 我国古代数学典籍九章算术“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,
7、则输出结果n=( ) A. 2B. 3C. 4D. 5【答案】C【解析】开始,输入,则,判断,否,循环,则,判断,否,循环, 则,判断,否,循环, 则,判断,是,输出,结束.故选择C.8. 设x、yR,则“|x|4且|y|3”是“1”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】依据题意作出图形,然后根据充分条件、必要条件的概念进行判断即可.【详解】“|x|4且|y|3”表示的平面区域M为矩形区域,“1”表示的平面区域N为椭圆1及其内部,则如图显然N在M内,故选:B【点睛】本题考查充分条件、必要条件的概念以及椭圆的图象
8、,识记概念,属基础题.9. 在区间中随机取一个实数,则事件“直线与圆相交”发生的概率为( )A. B. C. D. 【答案】A【解析】依题意得圆的圆心为,半径为.要使直线与圆相交,则圆心到直线的距离,解得.由几何概型概率公式,得在区间中随机取一个实数,则事件“直线与圆相交”发生的概率为.故选A.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,要考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:一是无限性,二是等可能性,基本事件可以抽象为点,尽管这些点是无限的,
9、但它们所占据的的区域是有限的,因此可用“比例解法”求解几何概型的概率.10. 下列命题中,错误的是( )A. ,B. 在中,若,则C. 函数图象的一个对称中心是D. ,【答案】D【解析】【分析】由的范围可判断A;由大边对大角结合正弦定理可判断B;由正切函数的性质可判断C;由可判断D.【详解】对于A,当时,故,故A正确,不符合题意;对于B,在中,由大边对大角可得若,则,由正弦定理可得,故B正确,不符合题意;对于C,函数图象的一个对称中心是,故C正确,不符合题意;对于D,故不存在,使得,故D错误,符合题意.故选:D.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的
10、交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3C. D. 4【答案】B【解析】【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离公式求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线
11、段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 设、分别是椭圆C:左、右焦点,直线过交椭圆C于A,B两点,交y轴于C点,若满足且,则椭圆的离心率为( )A. B. C. D. 【答案】A【解析】【分析】利用已知条件求出点的坐标,利用两点间的距离公式求得,利用椭圆的定义求得,整理求得离心率.【详解】设点坐标为,所以有,解得,因为,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-537371.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
