2021届高考数学二轮复习 专题能力训练20 坐标系与参数方程(选修4-4)文(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届高考数学二轮复习 专题能力训练20 坐标系与参数方程选修4-4文含解析 2021 高考 数学 二轮 复习 专题 能力 训练 20 坐标系 参数 方程 选修 解析
- 资源描述:
-
1、专题能力训练20坐标系与参数方程(选修44)一、能力突破训练1.(2020全国,文22)在直角坐标系xOy中,曲线C1的参数方程为x=coskt,y=sinkt(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4cos -16sin +3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.2.如图,在极坐标系Ox中,A(2,0),B2,4,C2,34,D(2,),弧AB,BC,CD所在圆的圆心分别是(1,0),1,2,(1,),曲线M1是弧AB,曲线M2是弧BC,曲线M3是弧CD.(1)分别写出M1,M2,M3的极坐标方程
2、;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=3,求P的极坐标.3.在平面直角坐标系xOy中,直线l的方程为3x+y+a=0,曲线C的参数方程为x=3cos,y=1+3sin(为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求直线l和曲线C的极坐标方程;(2)若直线=6(R)与直线l的交点为M,与曲线C的交点为A,B,且点M恰好为线段AB的中点,求a.4.在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2+2cos -3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三
3、个公共点,求C1的方程.5.在极坐标系中,曲线C的极坐标方程为sin2-cos =0,点M1,2.以极点O为原点,以极轴为x轴正半轴建立直角坐标系.斜率为-1的直线l过点M,且与曲线C交于A,B两点.(1)求出曲线C的直角坐标方程和直线l的参数方程;(2)求点M到A,B两点的距离之积.二、思维提升训练6.在平面直角坐标系xOy中,已知直线C:x=-22t,y=1+22t(t为参数),圆M:x2+y2-4x=0.以原点O为极点,x轴的非负半轴为极轴建立极坐标系.(1)写出直线C与圆M的极坐标方程;(2)在极坐标系中,已知射线l:=(0)分别与直线C及圆M相交于A,B两点,当0,2时,求SOMBS
4、OMA的最大值.7.已知直线l的参数方程为x=1+2t,y=2t(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程是=sin1-sin2.(1)写出直线l的极坐标方程与曲线C的直角坐标方程;(2)若点P是曲线C上的动点,求点P到直线l的距离的最小值,并求出点P的坐标.8.在平面直角坐标系xOy中,直线l经过点P(0,3),且倾斜角为,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为2-4cos-3-1=0.(1)求直线l的参数方程和圆C的直角坐标方程;(2)设直线l与圆C交于M,N两点,若|PM|-|PN|=2,求直线l的倾斜角的值.专题能力训
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-612801.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
