2022-2023学年人教版九年级数学上册第二十四章圆专题训练试题(含详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二 十四 专题 训练 试题 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D402、如图,正方形的边长
2、为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上)若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()AB1CD3、已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或1204、如图,O中,弦ABCD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD于M,过F作FHAC,垂足为G,以下结论:;HCBF:MFFC:,其中成立的个数是()A1个B2个C3个D4个5、如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D216、如图,五边形是O的内接正五边形,则的度数为()ABC
3、D7、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则()A点A在O上B点A在O内C点A在O外D点A与O的位置关系无法确定8、如图,正五边形内接于,为上的一点(点不与点重合),则的度数为()ABCD9、如图,在等腰RtABC中,ACBC,点P在以斜边AB为直径的半圆上,M为PC的中点当点P沿半圆从点A运动至点B时,点M运动的路径长是()ABCD210、如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A50mB40mC30mD25m第卷(非选择题 70分)二、填空题
4、(5小题,每小题4分,共计20分)1、如图,已知正六边形ABCDEF的边长为2,对角线CF和BE相交于点N,对角线DF与BE相交于点M,则MN_2、如图,在RtABC中,ACB=90,AC=6,BC=8,点D是AB的中点,以CD为直径作O,O分别与AC,BC交于点E,F,过点F作O的切线FG,交AB于点G,则FG的长为_3、如图,O的直径AB4,P为O上的动点,连结AP,Q为AP的中点,若点P在圆上运动一周,则点Q经过的路径长是_4、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为_5、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一
5、点,连接PA,PB,则PAB面积的最大值为_三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,ACB90,BAC的平分线交BC于点O,OC1,以点O为圆心OC为半径作半圆(1)求证:AB为O的切线;(2)如果tanCAO,求cosB的值2、如图,已知点在上,点在外,求作一个圆,使它经过点,并且与相切于点(要求写出作法,不要求证明)3、如图,BAC的平分线交ABC的外接圆于点D,ABC的平分线交AD于点E(1)求证:DEDB;(2)若BAC90,BD4,求ABC外接圆的半径4、如图,内接于,则的直径等于多少?5、如图,为的直径,过圆上一点作的切线交的延长线与点,过点作交于点
6、,连接(1)直线与相切吗?并说明理由;(2)若,求的长-参考答案-一、单选题1、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大值【详解】解:过A点作AHBD于H,连接OM,如图,在RtABD中,BD=,AHBD=ADAB,AH=36,O的半径为26,点O在AH上时,OH最短,HM=,此时HM有最大值,最大值为:24,OHMN,MN=2MH,MN的最大值为224=48故选:A【考点】本题考查了垂径定理:直于弦的直径平分这条弦,并
7、且平分弦所对的两条弧也考查了矩形的性质和勾股定理2、D【解析】【分析】根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解【详解】正方形的边长为4是正方形的对角线圆锥底面周长为,解得该圆锥的底面圆的半径是,故选:D【考点】本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥的相关知识点,熟练掌握弧长公式及圆的周长公式是解决本题的关键3、D【解析】【分析】由图可知,OA=10,OD=5根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】解:由图可知,OA=10,O
8、D=5,在RtOAD中,OA=10,OD=5,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120即弦AB所对的圆周角的度数是60或120,故选D【考点】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键4、C【解析】【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可【详解】解:F为的中点,故正确,FCMFAC,FCGACM+FCM,AMEFMCACM+FAC,AMEFMCFCGFCM,FCFM,故错误,ABCD,FHAC,AEMCGF90
9、,CFH+FCG90,BAF+AME90,CFHBAF,HCBF,故正确,AGF90,CAF+AFH90,180,180,故正确,故选:C【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题5、A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选A【考点】此题主要考查了解直角三角形的知识,作出ADB
10、C,进而得出相关线段的长度是解决问题的关键6、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出ABE=AEB,然后利用三角形内角和求出ABE=即可【详解】解:五边形是O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键7、A【解析】【分析】先求出点A到圆心O的距离,再根据点与圆的位置依据判断可得【详解】解:点A(4,3)到圆心O的距离,OAr5,点A在O上,故选:A【考点】本题
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-635823.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
旅游法规模拟18.pdf
